River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1248765DOI Listing

Publication Analysis

Top Keywords

river basins
12
drainage divides
12
dynamic reorganization
8
reorganization river
8
river networks
8
river
7
basins
4
basins river
4
networks evolve
4
evolve migrating
4

Similar Publications

The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Lithospheric strike-slip faulting in central Tibet since 35-32 Ma and implications for the incipient Asian extrusional tectonics.

Natl Sci Rev

February 2025

SinoProbe Laboratory, Key Laboratory of Continental Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.

The onset age and depth of the central Tibet strike-slip faults are two still unresolved fundamental issues with regard to the Cenozoic tectonic evolution of central Tibet. Here we present a comprehensive dataset of geochronological, geochemical and structural data on recently discovered en-echelon dykes representing the incipient development of strike-slip faulting from the Lunpola basin in central Tibet. Our results provide evidence for mantle-derived, bimodal magmatism linked to lithospheric-scale strike-slip faulting at 35-32 Ma, and demonstrate that the central Tibet strike-slip faults are at least 20 Ma older than previously estimated (15-8 Ma).

View Article and Find Full Text PDF

Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.

View Article and Find Full Text PDF

The Asian Arowana, (Müller and Schlegel, 1844) is a large majestic freshwater teleost, crowned as the king of aquariums with its bright charismatic appearance and magnificent swimming performance. The most expensive Asian arowana is the Golden Blue-based Malayan Arowana which is endemic to the Bukit Merah Lake and Kerian River Basin, Perak, Malaysia. has been listed as endangered by the IUCN (International Union for Conservation of Nature), regulated under Appendix 1 of the Convention of International Trade on Endangered Species (CITES) for commercial trade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!