Mother-to-infant transmission (MTIT) of HIV is a serious global health concern, with over 300,000 children newly infected in 2011. SIV infection of rhesus macaques (RMs) results in similar rates of MTIT to that of HIV in humans. In contrast, SIV infection of sooty mangabeys (SMs) rarely results in MTIT. The mechanisms underlying protection from MTIT in SMs are unknown. In this study we tested the hypotheses that breast milk factors and/or target cell availability dictate the rate of MTIT in RMs (transmitters) and SMs (non-transmitters). We measured viral loads (cell-free and cell-associated), levels of immune mediators, and the ability to inhibit SIV infection in vitro in milk obtained from lactating RMs and SMs. In addition, we assessed the levels of target cells (CD4+CCR5+ T cells) in gastrointestinal and lymphoid tissues, including those relevant to breastfeeding transmission, as well as peripheral blood from uninfected RM and SM infants. We found that frequently-transmitting RMs did not have higher levels of cell-free or cell-associated viral loads in milk compared to rarely-transmitting SMs. Milk from both RMs and SMs moderately inhibited in vitro SIV infection, and presence of the examined immune mediators in these two species did not readily explain the differential rates of transmission. Importantly, we found that the percentage of CD4+CCR5+ T cells was significantly lower in all tissues in infant SMs as compared to infant RMs despite robust levels of CD4+ T cell proliferation in both species. The difference between the frequently-transmitting RMs and rarely-transmitting SMs was most pronounced in CD4+ memory T cells in the spleen, jejunum, and colon as well as in central and effector memory CD4+ T cells in the peripheral blood. We propose that limited availability of SIV target cells in infant SMs represents a key evolutionary adaptation to reduce the risk of MTIT in SIV-infected SMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946396PMC
http://dx.doi.org/10.1371/journal.ppat.1003958DOI Listing

Publication Analysis

Top Keywords

siv infection
16
sms
10
target cell
8
cell availability
8
breast milk
8
milk factors
8
mother-to-infant transmission
8
sooty mangabeys
8
rhesus macaques
8
mtit hiv
8

Similar Publications

Purpose Of Review: Women are underrepresented in HIV infection and prevention research despite making up half of people living with HIV. The female genital tract (FGT) serves as a primary site of HIV acquisition, but gaps in knowledge remain regarding protective innate immune mechanisms. Innate lymphoid cells are tissue-resident cells involved in mucosal barrier maintenance and protection, and innate lymphoid cells (ILCs) are altered during chronic HIV infection.

View Article and Find Full Text PDF

Purpose Of Review: Typically, both HIV-infected humans and simian immunodeficiency virus (SIV)-infected Asian nonhuman primates (NHPs) eventually progress to AIDS, while African NHPs that are natural hosts of SIV do not, in spite of life-long, high levels of viral replication. Lack of disease progression in African NHPs is not due to some adaptation by the virus, but rather to host adaptations to the virus. Central to these adaptations is maintenance of the gut integrity during acute viral replication and inflammation, which allows natural hosts to avoid the chronic inflammation characteristic to pathogenic HIV/SIV infection.

View Article and Find Full Text PDF

Elephant in the room: natural killer cells don't forget HIV either.

Curr Opin HIV AIDS

December 2024

Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.

Purpose Of Review: Like elephants (and T cells), accumulating evidence suggest natural killer (NK) cells never forget. The description of adaptive or memory NK cells, which can be induced by HIV/SIV infections and vaccines and associated with protective effects in persons with HIV (PWH), has dramatically increased the interest in leveraging NK cells to prevent HIV infection or suppress HIV reservoirs. However, harnessing their full antiviral potential has been hindered by an incomplete understanding of mechanisms underlying adaptive NK cell development and infected cell recognition.

View Article and Find Full Text PDF

Purpose Of Review: Natural killer (NK) cells are integral components of the innate immune system, serving a vital function in eliminating virally infected cells. This review highlights the significance of CXCR5+ NK cells in the context of chronic HIV/SIV infection and viral control.

Recent Findings: Controlled HIV/SHIV infection results in a substantial increase in the population of CXCR5+ NK cells within the B-cell follicles of secondary lymphoid organs (SLOs).

View Article and Find Full Text PDF

Robust CD8 T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8 T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!