Objectives: HIV-1 viral quantitation is essential for treatment monitoring. An in-house assay would decrease financial barriers to access.

Materials And Methods: A real-time competitive RT-PCR in house assay (Sing-IH) was developed in Singapore. Using HXB2 as reference, the assay's primers and probes were designed to generate a 183-bp product that overlaps a portion of the LTR region and gag region. A competitive internal control (IC) was included in each assay to monitor false negative results due to inhibition or human error. Clinical evaluation was performed on 249 HIV-1 positive patient samples in comparison with the commercially available Generic HIV Viral Load assay. Correlation and agreement of results were assessed for plasma HIV-1 quantification with both assays.

Results: The assay has a lower limit of detection equivalent to 126 copies/mL of HIV-1 RNA and a linear range of detection from 100-1000000 copies/mL. Comparative analysis with reference to the Generic assay demonstrated good agreement between both assays with a mean difference of 0.22 log10 copies/mL and 98.8% of values within 1 log10 copies/mL range. Furthermore, the Sing-IH assay can quantify HIV-1 group M subtypes A-H and group N isolates adequately, making it highly suitable for our region, where subtype B and CRF01_AE predominate.

Conclusions: With a significantly lower running cost compared to commercially available assays, the broadly sensitive Sing-IH assay could help to overcome the cost barriers and serve as a useful addition to the currently limited HIV viral load assay options for resource-limited settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945479PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089826PLOS

Publication Analysis

Top Keywords

assay
10
clinical evaluation
8
hiv viral
8
viral load
8
load assay
8
log10 copies/ml
8
sing-ih assay
8
hiv-1
7
evaluation low
4
low cost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!