A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. | LitMetric

Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields.

Life Sci

Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea. Electronic address:

Published: April 2014

Aim: There is a specific frequency of extremely low-frequency electromagnetic field (ELF-EMF) that promotes neuronal differentiation. Although several mechanisms are known to regulate ELF-EMF-induced neuronal differentiation, a key factor that mediates neurogenic potentials by the ELF-EMF is largely unknown. Also, the potential use of ELF-EMF exposure in cell transplantation assays is yet to be determined, including their possible use in ELF-EMF based therapy of neurological diseases. The aim of this study is to understand the underlying mechanisms that mediate ELF-EMF-induced neuronal differentiation and also to harness these mechanisms for cell transplantation assays.

Main Method: Human bone marrow-mesenchymal stem cells (hBM-MSCs) were exposed to ELF-EMF (50 Hz frequency, 1mT intensity) for 8 days. The hBM-MSC derived neurons were then analyzed by general molecular biology techniques including immunofluorescence and quantitative RT-PCR. To assess changes in gene expression induced by ELF-EMF exposure, we analyzed the transcriptome of neuronal cells after an 8-day ELF-EMF exposure (50 Hz, 1 mT) and compared the transcriptional profiles to control cells.

Key Finding: We found that early growth response protein 1 (Egr1) is one of the key transcription factors in ELF-EMF-induced neuronal differentiation. In addition, we show that transplantations of ELF-EMF-induced neurons significantly alleviate symptoms in mouse models of neurodegenerative disease.

Significance: These findings indicate that a specific transcriptional factor, Egr1, mediates ELF-EMF-induced neuronal differentiations, and demonstrate the promise of ELF-EMF based cell replacement therapies for neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2014.02.022DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
20
elf-emf-induced neuronal
16
elf-emf exposure
12
extremely low-frequency
8
low-frequency electromagnetic
8
elf-emf
8
cell transplantation
8
elf-emf based
8
neuronal
7
differentiation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!