While virulence properties of Candida albicans, the most commonly isolated human fungal pathogen, are controlled by transcriptional and post-translational mechanisms, considerably little is known about the role of post-transcriptional, and particularly translational, mechanisms. We demonstrate that UME6, a key filament-specific transcriptional regulator whose expression level is sufficient to determine C. albicans morphology and promote virulence, has one of the longest 5' untranslated regions (UTRs) identified in fungi to date, which is predicted to form a complex and extremely stable secondary structure. The 5' UTR inhibits the ability of UME6, when expressed at constitutive high levels, to drive complete hyphal growth, but does not cause a reduction in UME6 transcript. Deletion of the 5' UTR increases C. albicans filamentation under a variety of conditions but does not affect UME6 transcript level or induction kinetics. We show that the 5' UTR functions to inhibit Ume6 protein expression under several filament-inducing conditions and specifically reduces association of the UME6 transcript with polysomes. Overall, our findings suggest that translational efficiency mechanisms, known to regulate diverse biological processes in bacterial and viral pathogens as well as higher eukaryotes, have evolved to inhibit and fine-tune morphogenesis, a key virulence trait of many human fungal pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032089PMC
http://dx.doi.org/10.1111/mmi.12576DOI Listing

Publication Analysis

Top Keywords

ume6 transcript
12
translational efficiency
8
candida albicans
8
human fungal
8
ume6
6
utr-mediated translational
4
efficiency mechanism
4
mechanism inhibits
4
inhibits candida
4
albicans morphological
4

Similar Publications

Unlabelled: Prominent virulence traits of include its ability to produce filamentous hyphal cells and grow as a biofilm. These traits are under control of numerous transcription factors (TFs), including Brg1 and Rme1. In the reference strain SC5314, a Δ/Δ mutant has reduced levels of biofilm/filament production; a Δ/Δ Δ/Δ double mutant has wild-type levels of biofilm/filament production.

View Article and Find Full Text PDF
Article Synopsis
  • Blue light can activate light-sensitive proteins, like VP-EL222, enabling new optogenetic tools to control cellular functions in yeast.
  • We tested the VP-EL222 protein's ability to adjust gene expression based on light intensity and duration, finding it can accommodate larger functional components.
  • Our research shows how to both activate and repress gene expression using EL222, and how this system can work alongside natural phosphate-regulated controls, enhancing its use in various biological studies.
View Article and Find Full Text PDF

is a yeast pathogen causing nosocomial outbreaks of candidemia. Its ability to adhere to inert surfaces and to be transmitted from one patient to another via medical devices is of particular concern. Like other spp.

View Article and Find Full Text PDF

Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here, we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling () pathway in the budding yeast , exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function.

View Article and Find Full Text PDF

Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!