We report a comprehensive simulation and experimental study on the optical and electronic properties of uniform and ordered copper nanomeshes (Cu NMs) to determine their performance for transparent conductors. Our study includes simulations to determine the role of propagating modes in transmission and experiments that demonstrate a scalable, facile microsphere-based method to fabricate NMs on rigid quartz and flexible polyethylene terephthalate substrates. The fabrication method allows for precise control over NM morphology with near-perfect uniformity and long-range order over large areas on rigid substrates. Our Cu NMs demonstrate 80% diffuse transmission at 17 Ω/square on quartz, which is comparable to indium tin oxide. We also performed durability experiments that demonstrate these Cu NMs are robust from bending, heating, and abrasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl5003075 | DOI Listing |
Pflugers Arch
January 2025
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.
View Article and Find Full Text PDFBackground: A growing number of individuals and families are affected by Alzheimer's disease (AD) across the United States. Changes in insight and levels of anxiety have been extensively but independently investigated in this population. In contrast, research on the relationship between insight and anxiety has been limited and has yielded inconsistent results.
View Article and Find Full Text PDFCureus
December 2024
Medical Microbiology, Vinayaka Mission's Kirupananda Variyar Medical College and Hospital, Salem, IND.
Introduction The antimicrobial resistance of is variable and is influenced by both geographic location and regional antibiotic use. The overuse of antibiotics, especially in hospitalised patients, suppresses the growth and persistence of drug-resistant bacteria. This study aimed to detect the prevalence of carbapenem-resistant and the genes responsible for the resistance.
View Article and Find Full Text PDFEnviron Res
December 2024
Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China.
Water pollution caused by antibiotics is considered a major and growing issue. To address this challenge, high-performance copper vanadate-based biochar (CuVO/BC) nanocomposite photocatalysts were prepared to develop an efficient visible light-driven photocatalytic system for the remediation of tetracycline (TC) contaminated water. The effects of photocatalyst mass, solution pH, pollutant concentration, and common anions on the TC degradation were investigated in detail.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Nanjing University, Hankou Road 22, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, CHINA.
Driven by the miniaturization of microelectronic devices and their multifunctionalities, the development of new quadruple-perovskite oxides with high dielectric constants and high Curie temperature are highly required. Herein, we report on the structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 (CCTO) quadruple perovskite oxides, CaCu3Ti3.9Sb0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!