Context: Puberty is a crucial period of dramatic hormonal changes, accelerated growth, attainment of reproductive capacity, and acquisition of peak bone mass. Participation in recreational physical activity is widely acknowledged to provide significant health benefits in this period. Conversely, intense training imposes several constraints, such as training stress and maintenance of very low body fat to maximize performance. Adolescent female athletes are therefore at risk of overtraining and/or poor dietary intake, which may have several consequences for endocrine function. The "adaptive" changes in the hypothalamic-pituitary-gonadal, -adrenal, and somatotropic axes and the secretory role of the adipose tissue are reviewed, as are their effects on growth, menstrual cycles, and bone mass acquisition.
Design: A systematic search on Medline between 1990 and 2013 was conducted using the following terms: "intense training," "physical activity," or "exercise" combined with "hormone," "endocrine," and "girls," "women," or "elite female athletes." All articles reporting on the endocrine changes related to intense training and their potential implications for growth, menstrual cycles, and bone mass acquisition were considered.
Results And Conclusion: Young female athletes present a high prevalence of menstrual disorders, including delayed menarche, oligomenorrhea, and amenorrhea, characterized by a high degree of variability according to the type of sport. Exercise-related reproductive dysfunction may have consequences for growth velocity and peak bone mass acquisition. Recent findings highlight the endocrine role of adipose tissue and energy balance in the regulation of homeostasis and reproductive function. A better understanding of the mechanisms whereby intense training affects the endocrine system may orient research to develop innovative strategies (ie, based on nutritional or pharmacological approaches and individualized modalities of training and competition) to improve the medical care of these adolescents and protect their reproductive function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2013-3030 | DOI Listing |
Purpose: This study aimed to elucidate the correlation between the degree of fat infiltration (FI) in thoracic paraspinal muscles and thoracic vertebral degeneration (TVD).
Methods: This cross-sectional study comprised 474 patients who underwent standard thoracic computed tomography (CT) scans. The FI was quantified as the percentage of adipose tissues within the cross-sectional area of thoracic paraspinal muscles.
Sci Rep
January 2025
Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu Province, People's Republic of China.
Patients with Type 2 diabetes mellitus(T2DM) typically have an average or higher bone mineral density (BMD) but are at a significantly higher risk of fracture than patients without diabetes. Trabecular bone score (TBS) is a textural index derived from pixel gray-level variations in lumbar spine DXA image, which has been introduced as an indirect measure of bone quality. This study aimed to discuss the trends and annual rates of change in BMD and TBS with age in Chinese men with T2DM and men without diabetes mellitus.
View Article and Find Full Text PDFJ Obes Metab Syndr
January 2025
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Background: Although an appropriate weight management strategy is essential for obese individuals, weight loss can have adverse effects on bone mineral density (BMD). We conducted a systematic review of randomized controlled trials to evaluate changes in BMD after the implementation of various weight loss strategies.
Methods: The PubMed, Embase, Web of Science, and Cochrane Library databases were searched to find articles published from database inception until June 2023.
Biochem Pharmacol
January 2025
School of Medicine, Nankai University, Tianjin, PR China. Electronic address:
Osteoporosis is a chronic disease distinguished by decreased bone density and degradation of bone microstructure, frequently linked with inflammation and oxidative stress, both of which contribute to the acceleration of bone resorption. The compound 5,7-Dihydroxy-4-methylcoumarin (D4M) present in Artemisia dracunculus exhibits significant antioxidant and anti-inflammatory properties. Nonetheless, the potential anti-osteoporotic effects of D4M, along with the molecular targets and mechanisms responsible for these effects, have not been studied.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!