In this instructional review, we discuss how to control individual colloids and ensembles of colloids using electric fields. We provide background on the electrokinetic transport mechanisms and kT-scale equilibrium colloidal interactions that enable such control. We also describe the experimental configurations, microscopy methods, image analyses, and material systems for which these mechanisms have been successfully employed. Methods are presented for creating various structures including colloidal chains, quasi-2D colloidal crystals, and 3D colloidal crystals. We also describe electric-field-mediated feedback control of the colloidal crystal size as well as colloidal crystal assembly and disassembly. Finally, we discuss future extensions of these methods that aim to incorporate accurate colloidal crystallization dynamic models into electric-field-mediated feedback control to allow rapid assembly, disassembly, and repair of defect-free colloidal structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la500178b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!