Despite major progress in the understanding of properties of tropospheric aerosol particles, it remains challenging to understand their physical state and morphology. To obtain more detailed knowledge of the phases, phase transitions and morphologies of internally mixed organic/inorganic aerosol particles, we evaluated liquid-liquid phase separation (LLPS), deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of 33 organic/ammonium sulfate (AS)/H2O systems from our own and literature data. The organic fraction consists of single compounds or mixtures with up to ten aliphatic and/or aromatic components with carboxylic acid, hydroxyl, carbonyl, ether, and ester functionalities, covering O : C ratios between 0.29 and 1.33. Thirteen out of these 33 systems did not show LLPS for any of the studied organic-to-inorganic mixing ratios, sixteen underwent LLPS showing core-shell morphology, and four showed both core-shell and partially engulfed configurations depending on the organic-to-inorganic ratio and RH. In all cases the organic fractions of the systems with partially engulfed configurations consisted of dicarboxylic acids. AS in mixed organic/AS/H2O particles deliquesced between 70 and 84% RH. AS effloresced below 58% RH or remained in a one-liquid-phase state. AS in droplets with LLPS always showed efflorescence with ERH between 30 and 50% RH, providing clear evidence that the presence of LLPS facilitates AS efflorescence. Spreading coefficients of the organic-rich phase on the AS-rich phase for systems containing polyethylene glycol 400 (PEG-400) and a mixture of dicarboxylic acids are in agreement with the optically observed morphologies of droplets deposited on the hydrophobic substrate. Analysis of high resolution elastic Mie resonance spectra allowed the detection of LLPS for single levitated droplets consisting of PEG-400/AS/ H2O, whereas LLPS was difficult to detect in (2-methylglutaric acid + 3-methylglutaric acid + 2,2-dimethylsuccinic acid)/AS/H2O. Measured Mie spectra of PEG-400/AS/H2O at 93.5% and at 80.9% RH agreed with computed Mie spectra for a homogeneous and a core-shell configuration, respectively, confirming the results obtained from droplets deposited on a hydrophobic substrate. Based on the presented evidence, we therefore consider the core-shell morphology to be the prevalent configuration of liquid-liquid-phase-separated tropospheric organic/AS/H2O particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3fd00049d | DOI Listing |
ACS Appl Eng Mater
December 2024
Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
Aerosol contamination presents significant challenges across various industries, ranging from healthcare to manufacturing. Over the past few years, open foam filters have gained prominence for their ability to efficiently capture particles while allowing reasonable airflow. In this work, we present the use of 3D-printed idealized open foam-like lattice structures as aerosol filtration media, leveraging advances in additive manufacturing to generate these highly tunable and modular filters.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
School of Biomedical Engineering and Imaging, Hubei University of Science and Technology, Hubei, China.
Fungal contamination in the air of hospital wards can affect the health of medical staff, patients, and caregivers. Through systematic analysis of the concentration, types, and particle size distribution characteristics of fungi in the air of wards in Wuhan, China, in 2023, it was found that there was no significant correlation between the concentration of fungi in the air of wards and the disease type and personnel density. The main influencing factors were temperature, humidity, and seasonal changes.
View Article and Find Full Text PDFACS Omega
December 2024
Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) Centers for Disease Control and Prevention (CDC),1090 Tusculum Ave,Cincinnati, Ohio 45226, United States.
Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.
View Article and Find Full Text PDFArch Toxicol
December 2024
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!