A bench-scale assessment of ozone pre-treatments for landfill leachates.

Environ Technol

Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, USA.

Published: April 2014

Leachate from stabilized landfill can pose unique challenges to conventional biological wastewater treatment. Ozone-based advanced oxidation processes have garnered recent consideration as an option to reduce the organic strength and recalcitrance of aged landfill leachate. With a bench-scale investigation, the reported work examines the potential for leachate conditioning for further biological treatment by treatment with low-mg/L doses of ozone (0-7.5 mg/L 03). While not sufficient for significant organics mineralization, the tested ozone doses could potentially produce both selective and non-selective oxidation of recalcitrant leachate organic compounds leaving bio-available products in the pre-treated leachate. Leachate conditioning by 03 or 03/H202 was assessed via monitoring of three anthropogenic organic leachate contaminants(tris-(2-chloroethyl) phosphate, tris-(butoxyethyl)-phosphate and 17beta-estradiol (E2)) with ozonation, and ozonation followed by anaerobic incubation. In addition, chemical oxygen demand (COD) and BOD5 analysis of the ozonated leachate, and methane and total gas formation during the anaerobic incubation were used to assess the degree of leachate conditioning. When treated with O3 alone, 58% removal of E2 was observed with an ozone dose of 4.5-5.4mg/L. Direct oxidation of the three leachate contaminants was limited with O3/H202 pre-treatment. However, this pre-treatment was observed to have significantly improved degradation of E2 during anaerobic incubation of ozonated leachates (removal rate of E2 was 53.7% with 15 days of incubation), indicating the potential for ozone synthesized co-metabolism. However, overall anaerobic microbial activity was not significantly impacted by the applied ozone pre-treatments, as measured by methane formation, total gas formation, and COD removal during incubation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2013.821141DOI Listing

Publication Analysis

Top Keywords

leachate conditioning
12
anaerobic incubation
12
leachate
10
ozone pre-treatments
8
total gas
8
gas formation
8
ozone
6
incubation
5
bench-scale assessment
4
assessment ozone
4

Similar Publications

Sorbent selection for the recovery of gallium and indium from aqueous solutions: a sustainable approach to the recovery of strategic metals from LED lamps.

Environ Sci Pollut Res Int

October 2024

Department of Chemical and Materials Engineering (CyPS Research Group), School of Chemical Sciences, Universidad Complutense de Madrid, 28040, Madrid, Spain.

Gallium and indium, metals present in light-emitting diode (LED) lighting technology, can be effectively recovered from aqueous solutions by sorption. For this purpose, carbonaceous materials, such as activated carbon, or low-cost biosorbents as beer bagasse, spent coffee grounds or peanut shells, and a low-cost zeolite as chabazite, were characterized by BET, FTIR, XRD, and SEM analysis prior use. Protonated chabazite, with high surface area (505 m/g) and a Si/Al molar ratio of 3.

View Article and Find Full Text PDF

Fenton-conditioning of landfill leachate biological sludge enables biochar for efficient Cr(Ⅵ)removal: Occurrence of oxygen-centered free radicals.

J Environ Manage

September 2024

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China. Electronic address:

Fenton-conditioning is commonly used to improve dewatering ability for municipal biological sludge, however, its application in industries is scarce. In this study, biochar (FT-BC) was successfully synthesized from a Fenton-conditioned landfill leachate biological sludge under oxygen-limited. As compared to the corresponding blank and poly ferric-pretreated biochars (BC and PF-BC), moderate Fenton conditioning of the sludge could enable good removal performance for Cr (Ⅵ) by FT-BC.

View Article and Find Full Text PDF

Low-cost optimization of industrial textile landfill sludge re-dewatering using ferrous sulfate and blast furnace slag.

J Environ Manage

August 2024

College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China. Electronic address:

This study was based on an industrial sludge landfill with a scale of 1 million cubic meters, which had been filled for more than 10 years. It focused on the secondary dewatering of industrial textile landfill sludge (LS) with a total organic carbon (TOC) content greater than 50% and a volatile suspended solids to suspended solids (VSS/SS) ratio of 0.59.

View Article and Find Full Text PDF

Physical conditioning methods for sludge deep dewatering: A critical review.

J Environ Manage

June 2024

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:

Sludge is an inevitable waste product of sewage treatment with a high water content and large volume, it poses a significant threat of secondary pollution to both water and the atmosphere without proper disposal. In this regard, dewatering has emerged as an attractive method in sludge treatment, as it can reduce the sludge volume, enhance its transportability and calorific value, and even decrease the production of landfill leachate. In recent years, physical conditioning methods including non-chemical conditioners or energy input alone, have been extensively researched for their potential to enhance sludge dewatering efficiency, such as thermal treatment, freeze-thaw, microwave, ultrasonic, skeleton builders addition, and electro-dewatering, as well as combined methods.

View Article and Find Full Text PDF

Reproductive toxicity assessment of cellulose nanofibers, citric acid, and branched polyethylenimine in sea urchins: Eco-design of nanostructured cellulose sponge framework (Part B).

Environ Pollut

June 2024

Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy. Electronic address:

In the framework of a safe-by-design approach, we previously assessed the eco-safety of nanostructured cellulose sponge (CNS) leachate on sea urchin reproduction. It impaired gamete quality, gamete fertilization competence, and embryo development possibly due to the leaching of chemical additives used during the CNS synthesis process. To extend this observation and identify the component(s) that contribute to CNS ecotoxicity, in the present study, we individually screened the cytotoxic effects on sea urchin Arbacia lixula and Paracentrotus lividus gametes and embryos of the three main constituents of CNS, namely cellulose nanofibers, citric acid, and branched polyethylenimine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!