Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927395 | PMC |
http://dx.doi.org/10.3389/fgene.2014.00037 | DOI Listing |
Front Vet Sci
December 2024
Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
One of the principal limitations on livestock productivity in sub-Saharan Africa is the constraining effect of infectious diseases, including tick-borne blood pathogens. Currently, diagnostic markers for these pathogens are species or genus specific, making it challenging to implement high-throughput screening methods. The aim of this study was to develop and validate a novel high-throughput diagnostic tool capable of detecting a range of important haemopathogens in livestock.
View Article and Find Full Text PDFTrop Med Int Health
January 2025
Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.
Background: Crimean-Congo hemorrhagic fever is a tick-borne zoonotic disease that may be severe and is present in many African countries. We aimed to understand the seroprevalence and risk for Crimean-Congo hemorrhagic fever virus in Tanzania by testing archived serum samples from patients enrolled in a prospective cohort study.
Methods: We prospectively enrolled febrile inpatients and outpatients from 2012 through 2014 at two referral hospitals in northern Tanzania.
J Glob Antimicrob Resist
January 2025
Institut National de la Santé et de la Recherche Médicale (UMR 1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, Clermont-Ferrand, France; Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France.
Background: Colistin is a last-line antibiotic used to treat severe human infections caused by carbapenemase-producing Gram-negative bacteria. In parallel, colistin has massively been used in the veterinary field so that mcr-1-positive E. coli have spread worldwide in livestock, potentially constituting a reservoir of colistin-resistant isolates that can be further transmitted to humans.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China. Electronic address:
Streptococcus suis (S. suis) is a neglected and emerging pathogen that leads to severe economic losses in swine industry. Despite its epidemic potential, the zoonotic threat posed by S.
View Article and Find Full Text PDFSci Total Environ
January 2025
Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:
Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!