Reduced intrinsic connectivity of amygdala in adults with major depressive disorder.

Front Psychiatry

Department of Psychiatry, University of Calgary, Calgary, AB , Canada ; Department of Clinical Neuroscience, University of Calgary, Calgary, AB , Canada ; Hotchkiss Brain Institute, University of Calgary, Calgary, AB , Canada ; Department of Radiology, University of Calgary, Calgary, AB , Canada.

Published: March 2014

Imaging studies of major depressive disorder (MDD) have demonstrated enhanced resting-state activity of the amygdala as well as exaggerated reactivity to negative emotional stimuli relative to healthy controls (HCs). However, the abnormalities in the intrinsic connectivity of the amygdala in MDD still remain unclear. As the resting-state activity and functional connectivity (RSFC) reflect fundamental brain processes, we compared the RSFC of the amygdala between unmedicated MDD patients and HCs. Seventy-four subjects, 55 adults meeting the DSM-IV criteria for MDD and 19 HCs, underwent a resting-state 3-T functional magnetic resonance imaging scan. An amygdala seed-based low frequency RSFC map for the whole brain was generated for each group. Compared with HCs, MDD patients showed a wide-spread reduction in the intrinsic connectivity of the amygdala with a variety of brain regions involved in emotional processing and regulation, including the ventrolateral prefrontal cortex, insula, caudate, middle and superior temporal regions, occipital cortex, and cerebellum, as well as increased connectivity with the bilateral temporal poles (p < 0.05 corrected). The increase in the intrinsic connectivity of amygdala with the temporal poles was inversely correlated with symptom severity and anxiety scores. Although the directionality of connections between regions cannot be inferred from temporal correlations, the reduced intrinsic connectivity of the amygdala predominantly with regions involved in emotional processing may reflect impaired bottom-up signaling for top-down cortical modulation of limbic regions leading to abnormal affect regulation in MDD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928548PMC
http://dx.doi.org/10.3389/fpsyt.2014.00017DOI Listing

Publication Analysis

Top Keywords

intrinsic connectivity
12
connectivity amygdala
12
major depressive
8
depressive disorder
8
resting-state activity
8
mdd patients
8
amygdala
6
connectivity
5
mdd
5
reduced intrinsic
4

Similar Publications

Prediction of health anxiety using resting-state functional near-infrared spectroscopy and machine learning.

J Affect Disord

January 2025

Key Laboratory of Adolescent Cyberpsychology and Behaviour (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China. Electronic address:

Background: The role of cortical networks in health anxiety remain poorly understood. This study aimed to develop a predictive model for health anxiety, using a machine-learning approach based on resting-state functional connectivity (rsFC) with functional near-infrared spectroscopy (fNIRS).

Method: One hundred and four university students experiencing school disclosure due to the Corona Virus Disease 2019 pandemic participated in the study, and the final sample consisted of 90 participants.

View Article and Find Full Text PDF

The purpose was to explore the spatial centrality of the whole brain functional network related to migraine and to investigate the potential functional hubs associated with migraine. 32 migraine patients and 55 healthy controls were recruited and they received resting-state functional magnetic resonance imaging voluntarily. Voxel-wise Degree Centrality (DC) was measured across the whole brain, and group differences in DC were compared.

View Article and Find Full Text PDF

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!