Curcumin alters the salt bridge-containing turn region in amyloid β(1-42) aggregates.

J Biol Chem

Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, ; Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsinghi, Hyderabad 500 075, India. Electronic address:

Published: April 2014

Amyloid β (Aβ) fibrillar deposits in the brain are a hallmark of Alzheimer disease (AD). Curcumin, a common ingredient of Asian spices, is known to disrupt Aβ fibril formation and to reduce AD pathology in mouse models. Understanding the structural changes induced by curcumin can potentially lead to AD pharmaceutical agents with inherent bio-compatibility. Here, we use solid-state NMR spectroscopy to investigate the structural modifications of amyloid β(1-42) (Aβ42) aggregates induced by curcumin. We find that curcumin induces major structural changes in the Asp-23-Lys-28 salt bridge region and near the C terminus. Electron microscopy shows that the Aβ42 fibrils are disrupted by curcumin. Surprisingly, some of these alterations are similar to those reported for Zn(2+) ions, another agent known to disrupt the fibrils and alter Aβ42 toxicity. Our results suggest the existence of a structurally related family of quasi-fibrillar conformers of Aβ42, which is stabilized both by curcumin and by Zn(2+.)

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036251PMC
http://dx.doi.org/10.1074/jbc.M113.519447DOI Listing

Publication Analysis

Top Keywords

amyloid β1-42
8
structural changes
8
induced curcumin
8
curcumin
7
curcumin alters
4
alters salt
4
salt bridge-containing
4
bridge-containing turn
4
turn region
4
region amyloid
4

Similar Publications

Background: A mobile cognition scale for community screening in cognitive impairment with rigorous validation is in paucity. We aimed to develop a digital scale that overcame low education for community screening for mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD.

Methods: A mobile cognitive self-assessment scale (CogSAS) was designed through the Delphi process, which is feasible for the older population with low education.

View Article and Find Full Text PDF

SAA3 deficiency exacerbates intestinal fibrosis in DSS-induced IBD mouse model.

Cell Death Discov

January 2025

Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.

Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended.

View Article and Find Full Text PDF

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Core blood biomarkers of Alzheimer's disease: A single-center real-world performance study.

J Prev Alzheimers Dis

February 2025

Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:

Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.

Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!