Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine's effects.

J Neurosci

Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain, Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom NR4 7TJ.

Published: March 2014

The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942573PMC
http://dx.doi.org/10.1523/JNEUROSCI.4147-13.2014DOI Listing

Publication Analysis

Top Keywords

receptor
13
receptor signaling
12
σ1 receptor
12
dopamine receptor
8
σ1-d1-h3 receptor
8
receptor complexes
8
effects cocaine
8
cell death
8
cocaine
5
cocaine disrupts
4

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Anxiolytic-like Effect of Chrysin on Female Zebrafish is Likely Mediated by α5 subunits of GABAA Receptors.

Chem Biodivers

January 2025

UNIFESSPA: Universidade Federal do Sul e Sudeste do Para, Faculdade de Psicologia, Rod. BR-230 (Transamazônica), Loteamento Cidade Jardim, Av. dos Ipês, s/n.º - Ci, 68503000, Marabá, BRAZIL.

Chrysin (5,7-dihydroxyflavone) is a natural flavonoid with potential anxiolytic-like effects in preclinical models. Acute treatment with this molecule (0 - 10 mg/kg) produced a biphasic dose-response in the zebrafish light/dark test (LDT), with anxiolytic-like effect at low doses and anxiogenic-like effects at high doses. Chrysin (1 mg/kg) decreased anxiety-like behavior in the zebrafish novel tank test (NTT), but did not prevent the anxiogenic effects of acute stress.

View Article and Find Full Text PDF

Repurposing the familiar: Future treatment options against chronic kidney disease.

J Pharm Pharmacol

January 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India.

Objectives: Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects.

View Article and Find Full Text PDF

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!