AI Article Synopsis

  • Spinal cord injuries significantly reduce spinal inhibition in humans, impacting motor control.
  • Sixteen individuals with chronic spinal cord injury underwent extensive locomotor training, resulting in improved spinal reflexes and muscle coordination.
  • Findings suggest that locomotor training enhances neural control mechanisms, benefiting both resting states and active walking in individuals with varying levels of spinal cord injury.

Article Abstract

Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00871.2013DOI Listing

Publication Analysis

Top Keywords

locomotor training
28
presynaptic inhibition
12
presynaptic facilitation
12
locomotor
8
training improves
8
improves premotoneuronal
8
premotoneuronal control
8
spinal cord
8
cord injury
8
spinal inhibition
8

Similar Publications

Objectives: To examine the validity and reliability of the Simple Motor Competence-check for Kids (SMC-Kids), which was developed to assess motor development in preschool children.

Design: A cross-sectional and repeated-measures design.

Methods: To assess validity, 71 children aged 4-6 years completed the Test of Gross Motor Development-3 (TGMD-3) and SMC-Kids (10 m shuttle run and paper ball throw).

View Article and Find Full Text PDF

Background: Our studies suggest that iron-overloaded rats developed neurotoxicity and cognitive impairment (1,2). An increase in brain mitochondrial fission and brain mitophagy have been considered as one of underlying mechanisms in brain with iron-overloaded condition (3,4). Hence, a pharmacological intervention focused on preventing brain mitochondrial pathologies is required.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: An increase in the development of learning deficit occurred during estrogen-deprived periods via the increment of systemic and brain oxidative stress, brain apoptosis, and synaptic dysplasticity. Although estrogen supplementation has been shown to improve the brain function in estrogen-deprived conditions, it can lead to several adverse effects. Therefore, the novel therapeutic approach with minimal side effects to protect brain function in estrogen-deprived conditions should be further investigated.

View Article and Find Full Text PDF

Despite their potential, exoskeletons have not reached widespread adoption in daily life, partly due to the challenge of seamlessly adapting assistance across various tasks and environments. Task-specific designs, reliance on complex sensing and extensive data-driven training often limit the practicality of the existing control strategies. To address this challenge, we introduce an adaptive control strategy for hip exoskeletons, emphasizing minimal sensing and ease of implementation.

View Article and Find Full Text PDF

Objective: Preschool children are in a period of rapid physical development, and improving their gross motor skills and physical fitness is quite important for their health. This study aimed to investigate the effectiveness of a structured physical training program in improving Chinese preschool children's gross motor development and physical fitness.

Method: A sample of 80 children aged 4 to 5 from Fujian, China, were randomly assigned to the intervention group ( = 41), which received a 15-week structured physical training, while the control group ( = 39) continued with their daily physical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!