Involvement of miRNAs in the early phase of halothane-induced liver injury.

Toxicology

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Drug Safety Sciences, Nagoya University School of Medicine, Nagoya 466-8550, Japan. Electronic address:

Published: May 2014

AI Article Synopsis

  • * This study investigates the effects of the hepatotoxic drug halothane (HAL) on miRNA expression in mice, finding significant changes in miRNA levels related to inflammation and liver injury within 24 hours after dosing.
  • * The researchers identified miR-106b as a crucial miRNA whose down-regulation leads to the up-regulation of STAT3, contributing to the development of HAL-induced liver injury.

Article Abstract

MicroRNAs (miRNA) form a class of small non-coding RNA molecules that negatively regulate gene expression. Most cellular pathways are modulated by miRNAs. However, the pathophysiological role of miRNAs during drug-induced liver injury (DILI) remains largely unknown. In this study, the possible involvement of miRNAs in DILI caused by the hepatotoxic drug halothane (HAL) was investigated. Toward this purpose, miRNA microarray studies of HAL-induced liver injury were performed in mice at five different time points up to 24h after dosing. To exclude any pharmacological effects on miRNA expression, isoflurane was used as a low hepatotoxic drug because it is structurally similar to HAL. Approximately 30-50% of the miRNA expression levels changed more than two-fold at every time point. In silico biological pathway analysis was performed to predict the targeted genes. Consequently, the miRNA gene down-regulation that occurred 1h after HAL administration was primarily related to inflammation, immune systems and liver injury. Based on additional in silico analyses, we identified miR-106b. Subsequently target of miR-106b was investigated using liver samples from mice with HAL-induced liver injury. Among the predicted targets, we discovered that a signal transducer and activator of transcription 3 (STAT3) was particularly up-regulated beginning during the early phase of HAL-induced liver injury. Collectively, the suppressed miR-106b expression, as well as the subsequent up-regulation of STAT3, was critical for the pathogenesis of HAL-induced liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2014.02.011DOI Listing

Publication Analysis

Top Keywords

liver injury
28
hal-induced liver
16
involvement mirnas
8
early phase
8
liver
8
hepatotoxic drug
8
mirna expression
8
injury
7
mirna
5
mirnas early
4

Similar Publications

As a serine hydrolase synthesized by the liver, butyrylcholinesterase (BChE) is an important biomarker in the clinical diagnosis of liver diseases. To track BChE activity in drug-induced liver injury, we designed a deep-red BChE-activatable fluorescent probe (CYL-BChE) with hemi-cyanine structure by using a cyclopropyl carbonyl group as a specific recognition moiety. Its near-infrared absorption wavelength (665 nm) and emission wavelength (762 nm) provide excellent tissue penetration capabilities, making it suitable for biological imaging.

View Article and Find Full Text PDF

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

Although herpes simplex virus, Epstein-Barr virus, and hemophagocytic lymphohistiocytosis are known causes of severe acute liver injury with or without liver failure, these diseases occur almost exclusively in immunocompromised and elderly patients. We report a case of an immunocompetent young man with no medical history who presented with a subacute cough and persistent fevers in the setting of a penile chancre. He was found to have severely elevated liver chemistries and was subsequently diagnosed with hemophagocytic lymphohistiocytosis because of disseminated herpes simplex virus type 1 and Epstein-Barr virus coinfection.

View Article and Find Full Text PDF

Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.

Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.

View Article and Find Full Text PDF

This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!