We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g(-1) under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0-4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2014.01.060DOI Listing

Publication Analysis

Top Keywords

synthesis characterization
8
sorption behavior
8
phenolic hydroxyl
8
hydroxyl groups
8
sorption
5
catechol-like phenolic
4
phenolic ligand-functionalized
4
ligand-functionalized hydrothermal
4
hydrothermal carbon
4
carbon one-pot
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!