Objective: An efficient sunscreen product needs to offer broad spectrum photostable UV protection during consumer use. Water resistance has become an additional criterion requested by consumers spending time near water or outdoors. Polymers generally provide water resistance to formulations and are critical to the formation and stability of a sunscreen film on skin when exposed to water. The present work introduces a new in vivo screening approach to measure water resistance using UVA-induced fluorescence imaging.
Methods: The approach has been applied to several formulations containing different polymers and compared to commercial products, for the three main water types: tap, salt and chlorinated water. All testing has been performed on the forearms of 10 subjects using UVA imaging. In addition, the skin whitening has been measured for all formulations on five subjects when exposed to water by visible light imaging.
Results: Our approach showed clear differences in water resistance values among the formulations tested, reflecting the importance of the formulation and the polymers used. The method proved capable of discriminating not only sunscreen performances with different water proofing ingredients but also water specific sunscreens such as a beach dedicated product showing a 20% higher resistance to salt water vs. tap and chlorine waters.
Conclusion: The use of UVA-induced fluorescence imaging on skin proved a useful in vivo approach for measuring the water resistance performances for various sunscreen lotions with a wide range of skin whitening effects in water. Our method showed how high water resistance can be combined in a Wet skin(®) sunscreen with superior non whitening effect on the skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.12126 | DOI Listing |
J Hosp Infect
January 2025
Institute of Patient care, Radboud University Medical Center, Nijmegen, The Netherlands.
J Hazard Mater
January 2025
Ministry of Ecology and Environment Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Polution, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfonamides are receiving increased attention due to their persistence in the environment and potential ecological risks. However, there are currently relatively few studies on the toxicity response of aquatic plants grown under the single and mixed planting methods to sulfadiazine (SD). This study investigated the response of the Vallisneria natans (Lour.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Department of Biomedical Engineering, Center for Injury Biomechanics, Wake Forest University School of Medicine. 575 N. Patterson Avenue, Suite 530. Winston-Salem, NC 27101, USA. Electronic address:
Muscle atrophy occurs with extended exposure to microgravity. This study quantified the overall muscle size, lean muscle area and fat infiltration changes pre- to post-flight that occur in the thoracic and lumbar spine with long-duration spaceflight. Pre- and post-flight magnetic resonance imaging (MRI) scans were obtained from 9 crewmembers on long-duration (≥6 months) International Space Station (ISS) missions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:
Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China. Electronic address:
The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!