Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975883 | PMC |
http://dx.doi.org/10.1186/1556-276X-9-107 | DOI Listing |
Nanoscale Res Lett
March 2014
School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China.
Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically.
View Article and Find Full Text PDFNanotechnology
February 2014
School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
Nano-branched TiO2 arrays were fabricated on fluorine-doped tin oxide (FTO) glass by a facile two-step chemical synthesis process. Self-powered UV photodetectors based on photoelectrochemical cells (PECs) were assembled using these TiO2 nano-branched arrays as photoanodes. These visible-blind self-powered UV photodetectors exhibit high sensitivity and high-speed photoresponse.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2011
School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics Beijing, Beijing, 100191, China.
Hierarchical TiO(2) nanostructures would be desirable for preparing dye-sensitized solar cells because of their large amount of dye adsorption and superior light harvesting efficiency, as well as efficient charge separation and transport properties. In this study, rutile TiO(2) nano-branched arrays grown directly on transparent conductive glass (FTO) were prepared by a facile two-step wet chemical synthesis process, using a simple aqueous chemical growth method involving immersing the TiO(2) nanorod arrays in an aqueous TiCl(4) solution as seeds, which were prepared by a hydrothermal method. The dye-sensitized solar cells based on the TiO(2) nano-branched arrays which were only about 3 μm in length show a short-circuit current intensity of 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!