Background: Non-cell-autonomous motor neuronal death is suggested in a mutant Cu/Zn superoxide dismutase 1 (mSOD1)-mediated amyotrophic lateral sclerosis (ALS) model, in which glial cells play significant roles in disease progression. Connexins (Cxs) form homotypic or heterotypic gap junctions (GJs) and allow direct intercellular communications among nervous tissue cells. The role of Cxs in motor neuron disease has never been investigated; therefore, we aimed to evaluate alterations of Cxs in mSOD1-transgenic (mSOD1-Tg) mice in comparison with their non-transgenic (non-Tg) littermates at the same ages.

Methods: We pathologically evaluated temporal changes to astrocytic Cx43/Cx30 and oligodendrocytic Cx47/Cx32 immunoreactivities at presymptomatic, disease-progressive, and end stages, relative to aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), excitatory amino acid transporter-2 (EAAT2), myelin-oligodendrocyte glycoprotein (MOG), and Nogo-A immunoreactivities, and observed neuronal loss by NeuN and neurofilament immunostaining, and microglial response by Iba-1 immunostaining. We also performed quantitative immunoblotting and real-time PCR analyses for Cxs.

Results: The mSOD1-Tg mice showed neuronal and axonal loss in the anterior horns of the lumbar spinal cord accompanied by increased activation of microglia compared with non-Tg mice at the disease-progressive and end stages. Expression patterns of Cxs were not different between mSOD1-Tg and non-Tg mice at the presymptomatic stage, but immunoreactivities for GFAP, Cx43, Cx30 and AQP4 were increased in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages. By contrast, Cx47 and Cx32 immunoreactivities were markedly diminished in Nogo-A-positive oligodendrocytes in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages, especially in oligodendrocytes showing SOD1 accumulation. EAAT2 immunoreactivity was also diminished in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages. Quantitative immunoblotting revealed a significant reduction in Cx47 and Cx32 protein levels in mSOD1-Tg mice at the disease-progressive and end stages. The levels of Cx47 and Cx32 mRNAs were also decreased at these stages.

Conclusions: Our findings indicate that oligodendrocytic and astrocytic GJ proteins in the anterior horns of spinal cord in mSOD1-Tg mice are profoundly affected at the disease-progressive and end stages, where disruption of GJs among glial cells may exacerbate motor neuronal death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016493PMC
http://dx.doi.org/10.1186/1742-2094-11-42DOI Listing

Publication Analysis

Top Keywords

msod1-tg mice
28
disease-progressive stages
28
anterior horns
20
mice disease-progressive
20
horns msod1-tg
12
cx47 cx32
12
mice
9
oligodendrocytic astrocytic
8
disease progression
8
amyotrophic lateral
8

Similar Publications

Clearance of peripheral nerve misfolded mutant protein by infiltrated macrophages correlates with motor neuron disease progression.

Sci Rep

August 2021

Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.

Macrophages expressing C-C chemokine receptor type 2 (CCR2) infiltrate the central and peripheral neural tissues of amyotrophic lateral sclerosis (ALS) patients. To identify the functional role of CCR2 macrophages in the pathomechanisms of ALS, we used an ALS animal model, mutant Cu/Zn superoxide dismutase 1 (mSOD1)-transgenic (Tg) mice. To clarify the CCR2 function in the model, we generated SOD1/CCR2/CX3CR1-Tg mice, which heterozygously express CCR2-RFP and CX3CR1-GFP, and SOD1/CCR2-Tg mice, which lack CCR2 protein expression and present with a CCR2-deficient phenotype.

View Article and Find Full Text PDF

Objective: Inositol hexakisphosphate kinase 2 (InsPK2), an enzyme that converts inositol hexakisphosphate (InsP) to diphosphoinositol pentakisphosphate (InsP), induces cell death. InsPK2 is abundant in the central nervous system, especially anterior horn cells of spinal cord. To identify the role of InsPK2 in amyotrophic lateral sclerosis (ALS), we investigated the expression levels of InsPK2 in transgenic mice expressing mutant superoxide dismutase-1 (SOD1) (mSOD1 Tg mice).

View Article and Find Full Text PDF

Extensive dysregulations of oligodendrocytic and astrocytic connexins are associated with disease progression in an amyotrophic lateral sclerosis mouse model.

J Neuroinflammation

March 2014

Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Background: Non-cell-autonomous motor neuronal death is suggested in a mutant Cu/Zn superoxide dismutase 1 (mSOD1)-mediated amyotrophic lateral sclerosis (ALS) model, in which glial cells play significant roles in disease progression. Connexins (Cxs) form homotypic or heterotypic gap junctions (GJs) and allow direct intercellular communications among nervous tissue cells. The role of Cxs in motor neuron disease has never been investigated; therefore, we aimed to evaluate alterations of Cxs in mSOD1-transgenic (mSOD1-Tg) mice in comparison with their non-transgenic (non-Tg) littermates at the same ages.

View Article and Find Full Text PDF

Non-cell-autonomous motor neuronal death is suggested in a mutant Cu/Zn superoxide dismutase 1 (mSOD1)-mediated amyotrophic lateral sclerosis (ALS) model, in which microglia and T cells play significant roles in disease progression. However, it remains unknown whether these cells are toxic or protective. The present study aimed to clarify the developmental age-related alterations of neuronal, glial and T cell responses to acute neuron injury in non-transgenic (N-Tg) mice, and the in vivo effects of mSOD1 on these changes by studying N-Tg and mSOD1-Tg mice subjected to unilateral hypoglossal nerve axotomy at young (8 weeks) and adult (17 weeks) ages.

View Article and Find Full Text PDF

In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis.

Autophagy

September 2011

Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Autophagy is involved in the pathological process of motor neuron death in amyotrophic lateral sclerosis (ALS). We have generated a novel double transgenic (DTg) mouse line by mating a green fluorescent protein (GFP)-fused microtubule-associated protein 1 light chain 3 (LC3) transgenic (LC3-Tg) mouse and a G93A mutant human Cu/Zn superoxide dismutase (mSOD1) transgenic (mSOD1-Tg) mouse. In vivo imaging of autophagy with these novel DTg mice was conducted at 10 (presymptomatic), 17 (early symptomatic) and 19 (late symptomatic) weeks of age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!