To gain insights into the relationships and the genetic exchange among environmental and clinical enterococci, 59 strains (29 from marine aquaculture sites and 30 from clinical settings) resistant to tetracycline, erythromycin, ampicillin and/or gentamicin were analysed for the antibiotic resistance tet(M), tet(L), tet(O), erm(A), erm(B), mef blaZ, aac(6')-Ie aph(2″)-Ia and virulence gelE, cylB, efaA and esp genes, and for the copper resistance gene tcrB. Antibiotic resistance and virulence genes were detected more frequently in clinical than in environmental enterococci; the opposite was true for copper resistance. Conjugation experiments demonstrated the transfer of antibiotic resistance genes from marine to clinical enterococci in interspecific mating and the uncommon joint transfer of tet(L) and erm(B). Enterobacterial repetitive intergenic consensus polymerase chain reaction typing evidenced a cluster (90% similarity) encompassing strains carrying multiple antibiotic resistance genes from both sets; the others marine isolates exhibited polyclonality and bore tcrB. Our results demonstrate that antibiotic-resistant marine enterococci bear antibiotic resistance genes transferable to humans and suggest that copper resistance, not observed among clinical strains, may be useful for survival in the environment, whereas virulence genes likely confer no advantage to enterococcal populations adapted to a lifestyle outside the host.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1758-2229.12125DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
virulence genes
12
copper resistance
12
resistance genes
12
resistance
9
resistance virulence
8
clinical strains
8
clinical enterococci
8
genes
7
clinical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!