We investigate the utility of 193 nm ultraviolet photodissociation (UVPD) in comparison to CID, higher energy CID (HCD), and electron transfer dissociation (ETD) for top down fragmentation of highly homologous green fluorescent proteins (GFP) in the gas phase. Several GFP variants were constructed via mutation of surface residues to charged moieties, demonstrating different pIs and presenting a challenge for identification by mass spectrometry. Presented is a comparison of fragmentation techniques utilized for top down characterization of four variants with varying levels of surface charge. UVPD consistently resulted in identification of more fragment ions relative to other MS/MS methods, allowing higher confidence identification. In addition to the high number of fragment ions, the sites of fragmentation were more evenly spread throughout the protein backbone, which proved key for localizing the point mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071602PMC
http://dx.doi.org/10.1002/pmic.201300364DOI Listing

Publication Analysis

Top Keywords

green fluorescent
8
fluorescent proteins
8
193 ultraviolet
8
ultraviolet photodissociation
8
mass spectrometry
8
fragment ions
8
characterization green
4
proteins 193
4
photodissociation mass
4
spectrometry investigate
4

Similar Publications

Both photothermal therapy (PTT) and chemodynamic therapy (CDT) are designed to focus their antitumor effect on only the tumor site, thereby minimizing unwanted severe damage to healthy tissue outside the tumor. However, each monotherapy is limited in achieving complete tumor eradication, resulting in tumor recurrence. The combination of multiple therapies may help to overcome the limitations of single therapy, improve the chances of complete tumor eradication, and reduce the risk of recurrence.

View Article and Find Full Text PDF

A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.

View Article and Find Full Text PDF

Effects of polylactic acid microplastics on dissolved organic matter across soil types: Insights into molecular composition.

J Hazard Mater

January 2025

Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.

Increasing evidence has highlighted the effects of biodegradable microplastics (MPs) on soil organic matter (SOM), but the role of soil type and incubation time remains unclear. This study investigated the effects of polylactic acid microplastics (PLA-MPs) on the amount and molecular composition of dissolved organic matter (DOM) across three paddy soil types (Ferralsol, Alfisol, and Mollisol) and incubation times, revealing soil-specific patterns in DOM transformation: PLA-MPs reduced DOM content in Ferralsol and Alfisol by 29.3-68.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

Obligate root parasitic plants of the Orobanchaceae family exhibit an intricate germination behavior. The host-dependent germination process of these parasites has prompted extensive research into effective control methods. While the effect of biomaterials such as amino acids and microRNA-encoded peptides have been explored, the effect of double-stranded RNAs (dsRNAs) has remained unexamined during the germination process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!