Growth dynamics of the primary spine of the cidaroid sea urchin Phyllacanthus imperialis was assessed for the first time using pulsed (26) Mg-labeling and NanoSIMS isotopic imaging. The sea urchin was incubated twice (for 48 h) in artificial seawater with elevated level of (26) Mg. After each labeling event, the sea urchin was returned for 72 h to seawater with natural isotopic abundance of (26) Mg. NanoSIMS ion microprobe was subsequently used to visualize the labeled regions of the spine with submicrometer lateral resolution. The growth of the new skeleton was restricted to the distalmost and peripheral portions of the spine. Skeletogenesis involved mostly the deposition of continuous thickening layers and lateral growth involving bridges between previously formed trabeculae. The timescale of formation of individual thickening layers (ca. 1 µm in width) on the stereom trabeculae was on the order of 1 day. Longitudinal growth occurred mainly at the periphery in the form of small portions of the thickening deposits or more massive microspines that appeared to branch and fuse with those above and below. These microspines were found to grow at about 10 µm/day. These results reveal that the skeletal growth of a juvenile cidaroid spine is complex and highly heterogeneous, with different extension rates depending on the stage of the stereom development and/or direction of the growth fronts. The growth pattern observed here at the submicrometer scale provides direct evidence supporting the earlier suggestions that the lamellar structure of echinoderm stereom is formed by periodic deposition of continuous mineral layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.20260 | DOI Listing |
Microorganisms
November 2024
Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, Eilat 8811201, Israel.
The red spotting disease harms sea urchins to the extent of mass mortality in the ocean and echinocultures, accompanied by environmental damage and economic losses. The current study emphasizes the antimicrobial resistance of three isolated bacteria, closely related to , , and , associated with red spotting in the cultured sea urchin . In vitro trials examined the susceptibility of these bacterial isolates to various antibiotics.
View Article and Find Full Text PDFJ Exp Biol
January 2025
University of Guelph, 50 Stone Rd E, Guelph, N1G 2M7, Canada.
The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.
View Article and Find Full Text PDFCurr Biol
December 2024
Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France. Electronic address:
The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China. Electronic address:
To explore the dynamic molecular responses to CO-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pH = 7.99 ± 0.01) or acidified conditions (ΔpH = -0.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
In this research, a rationally-designed strategy was employed to address the crucial issue of removing nano-plastics (NPs) from aquatic environments, which was based on fabricating sea urchin-like structures of FeO magnetic robots (MagRobots). Through imitating the sea urchin's telescopic tube foot movement and predation mechanism, the unique structures of the MagRobots were designed to adapt to the size and surface interactions of NPs, leading to a high efficiency of NPs removal (99%), as evidenced by the superior performance of 594.3 mg/g for the removal of polystyrene (PS) nanoparticles from water, with 3300% increase over magnetic FeO without structural design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!