We present the first evidence that transgenic Bacillus thuringiensis (Bt) corn pollen naturally deposited on Asclepias syriaca; common milkweed, in a corn field causes significant mortality of Danaus plexippus L. (Lepidoptera: Danaidae) larvae. Larvae feeding for 48 h on A. syriaca plants naturally dusted with pollen from Bt corn plants suffered significantly higher rates of mortality at 48 h (20±3%) compared to larvae feeding on leaves with no pollen (3±3%), or feeding on leaves with non-Bt pollen (0%). Mortality at 120 h of D. plexippus larvae exposed to 135 pollen grains/cm(2) of transgenic pollen for 48 h ranged from 37 to 70%. We found no sub-lethal effects on D. plexippus adults reared from larvae that survived a 48-h exposure to three concentrations of Bt pollen. Based on our quantification of the wind dispersal of this pollen beyond the edges of agricultural fields, we predict that the effects of transgenic pollen on D. plexippus may be observed at least 10 m from transgenic field borders. However, the highest larval mortality will likely occur on A. syriaca plants in corn fields or within 3 m of the edge of a transgenic corn field. We conclude that the ecological effects of transgenic insecticidal crops need to be evaluated more fully before they are planted over extensive areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004420000502 | DOI Listing |
In Silico Pharmacol
January 2025
Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India.
Unlabelled: Bet v 1, the European White Birch tree pollen allergen is responsible for a number of allergic responses in humans such as rhinitis, asthma and oral allergy syndrome. The allergen belongs to pathogenesis-related (PR) class 10 protein superfamily and exists in several naturally occurring isoforms. Limited structural information on Bet v 1 isoallergens and variants prompted us to carry out their in silico structural characterization.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Faculty of Science, Department of Molecular Biology and Genetics, Pamukkale University, Denizli, Türkiye.
This study investigates the pollen morphology of 13 taxa of Turkish Gentiana using a statistical approach, contributing to their taxonomy. The aim is to elucidate the palynological characteristics of the taxa and to reveal their contributions to the systematic understanding of the genus Gentiana. The pollen grains are monad, radially symmetrical, isopolar, and tricolporate.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biological Sciences, University of Illinois at Chicago, Chicago, 60607, IL, USA.
Premise: Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis.
Methods: We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L.
PLoS Genet
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
January 2025
Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!