Cellular folate concentration was earlier reported to be a critical factor in the activity and expression of the multidrug resistance protein MRP1 (ABCC1). Since MRP1 mediates resistance to a variety of therapeutic drugs, we investigated whether the cellular folate concentration influences the MRP1-mediated cellular resistance against drugs. As a model system, we used the human ovarian carcinoma cell line 2008wt, and its stably MRP1/ABCC1-transfected subline 2008/MRP1. These cell types have a moderate and high expression of MRP1, respectively. In folate-deprived 2008/MRP1 cells, the MRP1-mediated efflux of its model substrate calcein decreased to ~55 % of the initial efflux rate under folate-rich conditions. In 2008wt cells, only a small decrease in efflux was observed. Folate depletion for 5-10 days markedly increased (~500 %) cellular steady-state accumulation of calcein in 2008/MRP1 cells and moderately in 2008wt cells. A subsequent short (24 h) exposure to 2.3 μM L-leucovorin decreased calcein levels again in MRP1-overexpressing cells. Folate deprivation markedly increased growth inhibitory effects of the established MRP1 substrates daunorubicin (~twofold), doxorubicin (~fivefold), and methotrexate (~83-fold) in MRP1-overexpressing cells, proportional to MRP1 expression. In conclusion, this study demonstrates that increased cellular folate concentrations induce MRP1/ABCC1-related drug efflux and drug resistance. These results have important implications in the understanding of the role of MRP1 and its homologs in clinical drug resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-014-2421-0 | DOI Listing |
J Med Chem
January 2025
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
The lysine acetyltransferase 6A (KAT6A, MOZ, MYST3) is a member of the MYST family of protein acetyltransferases, which are essential for different biological processes such as craniofacial, embryonic, stem cell development, and hematopoiesis. KAT6A is an oncogene in human acute myeloid leukemia (AML), and KAT6A overexpression in AML is associated with metastases and poor prognoses. Furthermore, KAT6A mutations play an important role in cancer formation and progression and result in therapeutic resistance in both hematopoietic malignancies and solid tumors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Cancer therapy continues to face critical challenges, including drug resistance, recurrence, and severe side effects, which often compromise patient outcomes and quality of life. Exploring novel, cost-effective approaches, this review highlights the potential of Piper nigrum (black pepper) extract (PNE) as a complementary anticancer agent. Piper nigrum, a widely available spice with a rich history in traditional medicine, contains bioactive compounds such as piperine, which have demonstrated significant anticancer activities including cell cycle arrest, apoptosis induction, and inhibition of tumor growth and metastasis.
View Article and Find Full Text PDFActa Diabetol
January 2025
Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh, India.
Aims: This review examines the challenges posed by Diabetic Foot Infections (DFIs), focusing on the impact of neuropathy, peripheral arterial disease, immunopathy, and the polymicrobial nature of these infections. The aim is to explore the factors contributing to antimicrobial resistance and assess the potential of novel antimicrobial treatments and drug delivery systems in improving patient outcomes.
Method: A comprehensive analysis of existing literature on DFIs was conducted, highlighting the multifactorial pathogenesis and polymicrobial composition of these infections.
J Med Microbiol
January 2025
Norwegian Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Troms, Norway.
Infections by carbapenemase-producing (CP-Pa) are concerning due to limited treatment options. The emergence of multidrug-resistant (MDR) high-risk clones is an essential driver in the global rise of CP-Pa. Insights into the molecular epidemiology of CP-Pa are crucial to understanding its clinical and public health impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!