A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stimulation of N--glycoside transfer in deoxythymidine glycol: mechanism of the initial step in base excision repair. | LitMetric

Stimulation of N--glycoside transfer in deoxythymidine glycol: mechanism of the initial step in base excision repair.

J Mol Model

College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, People's Republic of China,

Published: March 2014

Thymine glycol (Tg), a toxic oxidative DNA lesion, is preferentially removed by endonuclease III (Endo III). To investigate the glycosylase activity of Endo III, the N--glycoside transfer mechanism in deoxythymidine glycol (dTg) is examined in this theoretical study based on the BHandHLYP/6-311++G(d,p) level of theory. Two controversial mechanisms were characterized, i.e., the displacement and endocyclic mechanisms. For each mechanism, three types of reaction models were established, including the direct reaction, local microhydration and protonated models. The calculated results indicate that (i) all three reaction models favor the displacement mechanism more than the endocyclic mechanism; (ii) the local microhydration model allows for discrete proton transfer and contributes to the reduction of activation energies, nevertheless, large activation energies are still involved; (iii) the O4'-protonated endocyclic model can efficiently promote the nucleophilic attack of lysine residue and an amino acid residue other than the nucleophilic lysine should be responsible for the opening of the sugar ring; (iv) the O2-protonated displacement model facilitates the leaving group (Tg) stabilization and therefore is the preferred mechanism for the N--glycoside transfer of dTg, whose activation energy of 17.7 kcal mol⁻¹ is in good agreement with the experimental estimate of 19.0 kcal mol⁻¹. As a result, the protonation of nucleobase plays a significant role in predicting the preferred glycosylase mechanism. Our findings can propose appropriate mechanisms for future large-scale enzymatic modeling of Endo III and provide more fundamental information about the important residues that may be included in the enzyme-catalyzed reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-014-2168-xDOI Listing

Publication Analysis

Top Keywords

n--glycoside transfer
12
endo iii
12
deoxythymidine glycol
8
reaction models
8
local microhydration
8
activation energies
8
kcal mol⁻¹
8
mechanism
7
iii
5
stimulation n--glycoside
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!