Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn.

Planta

Unit of Botany and Plant Physiology, Faculty of Horticulture, Institute of Plant Biology and Biotechnology, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland,

Published: June 2014

The aim of the study was the analysis of Cr distribution in shoots of the macrophyte Callitriche cophocarpa by means of two X-ray-based techniques: micro X-ray fluorescence (μXRF) and electron probe X-ray microanalysis (EPXMA). Plants were treated with 100 μM (5.2 mg l(-1)) chromium solutions for 7 days. Cr was introduced independently at two speciations as Cr(III) and Cr(VI), known for their diverse physicochemical properties and different influence on living organisms. A comparative analysis of Cr(III)-treated plants by EPXMA and μXRF demonstrated high deposition of Cr in epidermal glands/hairs localized on leaves and stems of the plant shoots. Cr in Cr(III)-treated plants was recorded solely in glands/hairs, and the element was not present in any other structures. On the other hand, Cr in Cr(VI)-treated group of plants was rather found in vascular bundles. Moreover, the concentration of Cr in Cr(VI)-treated plants was significantly lower than in plants incubated in Cr(III) solution. The results obtained in this work suggest differences in chromium uptake, transport and accumulation dependent on the oxidative state of the element.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031383PMC
http://dx.doi.org/10.1007/s00425-014-2047-9DOI Listing

Publication Analysis

Top Keywords

distribution shoots
8
shoots macrophyte
8
macrophyte callitriche
8
callitriche cophocarpa
8
criii-treated plants
8
plants
6
chromium distribution
4
cophocarpa sendtn
4
sendtn aim
4
aim study
4

Similar Publications

Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system.

View Article and Find Full Text PDF

Two different strategies for the distribution of macro- and trace elements can be observed in the terrestrial orchid Gymnadenia conopsea. Most trace elements are not translocated to the above-ground parts, whereas for macro-elements the trend was reversed, with the highest accumulation in the distal parts of the plants. Edaphic stress is one of the main factors affecting plant fitness, but it is still poorly understood, even in rare plants such as orchids.

View Article and Find Full Text PDF

Silicon transport and its "homeostasis" in rice.

Quant Plant Biol

January 2025

Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.

Silicon (Si), the most abundant mineral element in soil, functions as a beneficial element for plant growth. Higher Si accumulation in the shoots is required for high and stable production of rice, a typical Si-accumulating plant species. During the last two decades, great progresses has been made in the identification of Si transporters involved in uptake, xylem loading and unloading as well as preferential distribution and deposition of Si in rice.

View Article and Find Full Text PDF

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Analysis of the Distribution Pattern and Prophage Types in Asiaticus 'Cuimi' Kumquat.

Plants (Basel)

December 2024

National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.

The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!