Secreted Gaussia princeps luciferase as a reporter of Escherichia coli replication in a mouse tissue cage model of infection.

PLoS One

Biology Department, Infection Innovative Medicines, AstraZeneca R&D Boston, Waltham, Massachusetts, United States of America.

Published: February 2015

Measurement of bacterial burden in animal infection models is a key component for both bacterial pathogenesis studies and therapeutic agent research. The traditional quantification means for in vivo bacterial burden requires frequent animal sacrifice and enumerating colony forming units (CFU) recovered from infection loci. To address these issues, researchers have developed a variety of luciferase-expressing bacterial reporter strains to enable bacterial detection in living animals. To date, all such luciferase-based bacterial reporters are in cell-associated form. Production of luciferase-secreting recombinant bacteria could provide the advantage of reporting CFU from both infection loci themselves and remote sampling (eg. body fluid and plasma). Toward this end, we have genetically manipulated a pathogenic Escherichia coli (E. coli) strain, ATCC25922, to secrete the marine copepod Gaussia princeps luciferase (Gluc), and assessed the use of Gluc as both an in situ and ex situ reporter for bacterial burden in mouse tissue cage infections. The E. coli expressing Gluc demonstrates in vivo imaging of bacteria in a tissue cage model of infection. Furthermore, secreted Gluc activity and bacterial CFUs recovered from tissue cage fluid (TCF) are correlated along 18 days of infection. Importantly, secreted Gluc can also be detected in plasma samples and serve as an ex situ indicator for the established tissue cage infection, once high bacterial burdens are achieved. We have demonstrated that Gluc from marine eukaryotes can be stably expressed and secreted by pathogenic E. coli in vivo to enable a facile tool for longitudinal evaluation of persistent bacterial infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942414PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090382PLOS

Publication Analysis

Top Keywords

tissue cage
20
bacterial burden
12
bacterial
10
gaussia princeps
8
princeps luciferase
8
escherichia coli
8
mouse tissue
8
cage model
8
infection
8
model infection
8

Similar Publications

Exploring potential causal genetic variants and genes for endometrial cancer: Open Targets Genetics, Mendelian randomization, and multi-tissue transcriptome-wide association analysis.

Transl Cancer Res

November 2024

Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Endometrial cancer (EC) is the most common gynecological malignancy in developed countries, with incidence rates continuing to rise globally. However, the precise mechanisms underlying EC pathogenesis remain largely unexplored. This study aims to prioritize genes associated with EC by leveraging multi-omics data through various bioinformatic methods.

View Article and Find Full Text PDF

Costal cartilage plays an important functional role in the rib cage, but its mechanical properties have not been well characterized. The objective of this study is to characterize the properties of human costal cartilage and examine the effects of age, sex, rib level, and degree of calcification. We obtained cadaveric costal cartilage samples of ribs 3-6 with intact perichondrium from 24 donors (12 females and 12 males) evenly distributed by age (range 47-94 yr).

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy (RT) treatment planning is based on a planning computed tomography scan (pCT), while the decision to treat is often already established on a diagnostic CT scan (dCT). The objective of this study was to evaluate the usage of dCT for palliative radiation planning of soft tissue tumoral masses (STTMs), removing the need for a pCT scan and associated attendances.

Materials And Methods: RT planning was performed retrospectively to 38 STTMs of 7 anatomical sites using volumetric modulated arc therapy techniques in dCT and transferred to pCT.

View Article and Find Full Text PDF

Voluntary running exercise promotes maturation differentiation and myelination of oligodendrocytes around Aβ plaques in the medial prefrontal cortex of APP/PS1 mice.

Brain Res Bull

December 2024

Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Background: Previous studies have reported that running exercise could improves myelinization in hippocampus. However, the effects of running exercise on the differentiation and maturation of oligodendrocytes, and myelination surrounding Aβ plaques in the medial prefrontal cortex (mPFC) of the Alzheimer's disease (AD) brain have not been reported.

Methods: Forty 10-month-old male APP/PS1 AD mice were randomly divided into the AD group and the AD running (AD+RUN) group, while 20 age-matched wild-type littermate mice were included in the WT group.

View Article and Find Full Text PDF

Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Dmodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!