Here we report that LPS induces osteoclast (OC) formation in murine RAW 264.7 macrophage cells in RPMI-1640 medium but not in α-minimum essential medium (α-MEM) as the original culture medium. LPS-induced OC formation in both media was examined to clarify the differential response. Receptor activator of NF-κB ligand induced OC formation in either α-MEM or RPMI-1640 medium. However, LPS-induced OC formation in RAW 264.7 cells maintained in RPMI-1640 medium, but not α-MEM, which was also supported by mouse bone marrow-derived macrophages, although they were less sensitive to LPS than RAW 264.7 cells. LPS augmented the expression of nuclear factor of activated T-cells (NFATc1) as a key transcription factor of osteoclastogenesis in cells maintained in RPMI-1640 medium, but reduced it in cells maintained in α-MEM. A high concentration of LPS was cytotoxic against cells maintained in α-MEM. Glutathione exclusively present in RPMI-1640 medium prevented LPS-induced cell death in α-MEM and augmented LPS-induced NFATc1 expression, followed by enhanced LPS-induced OC formation. LPS induced higher generation of reactive oxygen species in α-MEM than RPMI-1640 medium. An antioxidant enhanced LPS-induced OC formation, whereas a pro-oxidant reduced it. Taken together, redox balance in the culture condition was suggested to regulate in vitro LPS-induced OC formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1753425914524242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!