Imaging is essential to the evaluation of bone and joint diseases, and the digital era has contributed to an exponential increase in the number of publications on noninvasive analytical techniques for the quantification of changes to bone and joints that occur in health and in disease. One such technique is high-resolution peripheral quantitative CT (HR-pQCT), which has introduced a new dimension in the imaging of bone and joints by providing images that are both 3D and at high resolution (82 μm isotropic voxel size), with a low level of radiation exposure (3-5 μSv). HR-pQCT enables the analysis of cortical and trabecular properties separately and to apply micro-finite element analysis for calculating bone biomechanical competence in vivo at the distal sites of the skeleton (distal radius and distal tibia). Moreover, HR-pQCT makes possible the in vivo assessment of the spatial distribution, dimensions and delineation of cortical bone erosions, osteophytes, periarticular cortical and trabecular microarchitecture, and 3D joint-space volume of the finger joints and wrists. HR-pQCT is, therefore, a technique with a high potential for improving our understanding of bone and joint diseases at the microarchitectural level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrrheum.2014.23 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Mechanical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic disorder characterized primarily by compromised blood supply. This vascular deficit results in cell apoptosis, trabecular bone loss, and structural collapse of the femoral head at late stage, significantly impairing joint function. While MRI is a highly effective tool for diagnosing ONFH in its early stages, challenges remain due to the limited availability and high cost of MRI, as well as the absence of routine MRI screening in asymptomatic patients.
View Article and Find Full Text PDFMater Today Bio
February 2025
China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).
View Article and Find Full Text PDFF1000Res
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands.
Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.
View Article and Find Full Text PDFBone Rep
March 2025
Department of Joint and Trauma Surgery, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China.
Phosphaturic mesenchymal tumor (PMT) is a rare benign mesenchymal tumor characterized by excessive secretion of fibroblast growth factor 23 (FGF23), leading to phosphate loss and systemic osteomalacia. Despite recent progress in PMT research, no consensus on diagnosis and treatment guidelines has been established. This case series describes the clinical and pathological features of six pathologically confirmed PMT patients treated at the Third Affiliated Hospital of Sun Yat-sen University from 2010 to 2024, aiming to provide new insights for the management of this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!