Background: Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. The present study was conducted to investigate the expression of GOLPH3 and its prognostic significance in renal cell carcinoma (RCC). Meanwhile, the function of GOLPH3 in human RCC was further investigated in cell culture models.

Methods: Expression of GOLPH3 was examined in 43 fresh RCC tissues and paired adjacent normal renal tissues by real-time quantitative PCR and western blotting. Immunohistochemistry for GOLPH3 was performed on additional 218 RCC tissues. The clinical significance of GOLPH3 expression was analysed. Downregulation of GOLPH3 was performed using small-interfering RNA (siRNA) in Caki-1 and 786-O cells with high abundance of GOLPH3, and the effects of GOLPH3 silencing on cell proliferation, migration, invasion in vitro, and tumour growth in vivo were evaluated.

Results: Expression of GOLPH3 was upregulated in the majority of the RCC clinical tissue specimens at both mRNA and protein levels. Clinicopathological analysis showed that GOLPH3 expression was significantly correlated with T stage (P<0.001), lymph-node status (P=0.003), distant metastasis (P<0.001), tumour-node-metastasis (TNM) stage (P<0.001), and Fuhman grade (P=0.001). Expression of GOLPH3 was inversely correlated with both overall and recurrence-free survival of RCC patients. Multivariate analysis showed that GOLPH3 expression was an independent prognostic indicator for patient's survival. Knockdown of the GOLPH3 expression reduced cell proliferation, anchorage-independent growth, migration, invasion, and tumour growth in xenograft model mice.

Conclusions: These results suggest that GOLPH3 expression is likely to have important roles in RCC development and progression, and that GOLPH3 is a prognostic biomarker and a promising therapeutic target for RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007226PMC
http://dx.doi.org/10.1038/bjc.2014.124DOI Listing

Publication Analysis

Top Keywords

golph3
12
expression golph3
12
renal cell
8
cell carcinoma
8
rcc tissues
8
golph3 performed
8
golph3 expression
8
expression
5
rcc
5
golph3 novel
4

Similar Publications

Involvement of GTPases and vesicle adapter proteins in Heparan sulfate biosynthesis: role of Rab1A, Rab2A and GOLPH3.

FEBS J

January 2025

Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.

Vesicle trafficking is pivotal in heparan sulfate (HS) biosynthesis, influencing its spatial and temporal regulation within distinct Golgi compartments. This regulation modulates the sulfation pattern of HS, which is crucial for governing various biological processes. Here, we investigate the effects of silencing Rab1A and Rab2A expression on the localisation of 3-O-sulfotransferase-5 (3OST5) within Golgi compartments and subsequent alterations in HS structure and levels.

View Article and Find Full Text PDF

With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study.

View Article and Find Full Text PDF

Molecular Insights into the Regulation of GNPTAB by TMEM251.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosylation is crucial for modifying lipids and sorting proteins, with its regulation involving a unique distribution of enzymes in the Golgi and the action of SPPL3.
  • In cells lacking the retention factor LYSET/TMEM251, there is increased secretion of a Golgi protein, B4GALT5, due to disrupted M6P tagging, which typically marks proteins for lysosomal degradation.
  • The study reveals that GOLPH3 and GOLPH3L adaptors play a critical role in stabilizing the LYSET-GNPT complex, maintaining proper Golgi function, and ensuring efficient lysosomal enzyme processing.
View Article and Find Full Text PDF

ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network.

Nat Commun

November 2024

Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!