One- and two-particle effects in the electronic and optical spectra of barium fluoride.

J Phys Condens Matter

Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.

Published: March 2014

One- and two-particle effects in the electronic and optical spectra of the fluoride compound BaF2 are determined using density functional theory and a many-body perturbation scheme. A wide energy range has been considered, including the visible and all the ultraviolet region. The GW approximation for the electronic self-energy has been used to tackle the one-particle excitations problem, enabling us to determine the electronic energy bands and densities of states of this fluoride. For the optical properties, the two-particle effects calculated with the Bethe-Salpeter scheme turn out to play a fundamental role. A bound exciton positioned at about 1.5 eV below the one-particle gap is forecasted. The optical absorption and the electron energy loss spectra together with other optical functions are in good agreement with the experimental results up to 15 eV. In fact, for this part of the spectrum a self-consistent one-particle scheme along with the Bethe-Salpeter approach produces notable results. Less satisfactory results for the higher energy region in the spectra have been produced with the proposed method. Possible causes of these discrepancies are fully discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/12/125501DOI Listing

Publication Analysis

Top Keywords

two-particle effects
12
one- two-particle
8
effects electronic
8
electronic optical
8
optical spectra
8
optical
5
electronic
4
spectra
4
spectra barium
4
barium fluoride
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!