Macrophages respond to endogenous and non-self stimuli acquiring the M1 or M2 phenotypes, corresponding to classical or alternative activation, respectively. The role of B-1 cells in the regulation of macrophage polarization through the secretion of interleukin (IL)-10 has been demonstrated. However, the influence of B-1 cells on macrophage phenotype induction by an immunogen that suppress their ability to secrete IL-10 has not been explored. Here, we studied the peritoneal macrophage pattern induced by liposomes comprised of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) carrying ovalbumin (OVA) (Lp DPPC/OVA), and the involvement of B-1 cells in macrophage polarization. Peritoneal cells from BALB/c, B-1 cells-deficient BALB/xid and C57BL/6 mice immunized with Lp DPPC/OVA and OVA in soluble form (PBS/OVA) were analyzed and stimulated or not in vitro with lipopolysaccharide (LPS). Peritoneal macrophages from BALB/c and C57BL/6 mice immunized with Lp DPPC/OVA showed an M2-like phenotype as evidenced by their high arginase activity without LPS stimulation. Upon stimulation, these macrophages were reprogrammable toward the M1 phenotype with the upregulation of nitric oxide (NO) and a decrease in IL-10 secretion. In addition, high IFN-γ levels were detected in the culture supernatant of peritoneal cells from BALB/c and C57BL/6 mice immunized with Lp DPPC/OVA. Nevertheless, still high levels of arginase activity and undetectable levels of IL-12 were found, indicating that the switch to a classical activation state was not complete. In the peritoneal cells from liposomes-immunized BALB/xid mice, levels of arginase activity, NO, and IL-6 were below those from wild type animals, but the last two products were restored upon adoptive transfer of B-1 cells, together with an increase in IFN-γ secretion. Summarizing, we have demonstrated that Lp DPPC/OVA induce an M2-like pattern in peritoneal macrophages reprogrammable to M1 phenotype after LPS stimulation, with the involvement of B-1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2014.01.006DOI Listing

Publication Analysis

Top Keywords

b-1 cells
24
involvement b-1
12
peritoneal cells
12
c57bl/6 mice
12
mice immunized
12
immunized dppc/ova
12
arginase activity
12
cells
9
induce m2-like
8
macrophage phenotype
8

Similar Publications

Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.

View Article and Find Full Text PDF

Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS), formerly recognized as Crohn's-like structures, serve as crucial biomarkers for evaluating the progression of colorectal cancer (CRC). Understanding their spatial distribution, cellular composition, and interactions within CRC is paramount for comprehending the immune response in the tumor microenvironment (TME). TLS are comprised of a T-cellular compartment and a B-cellular compartment, the latter encompassing follicular dendritic cells (FDCs), high endothelial venules (HEVs), and lymphatic vessels.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Parasitic infection is a complex process involving interactions among various immune cells. Regulatory B cells (Breg cells), a subset of B lymphocytes with immunosuppressive functions, play a role in modulating immune responses during infection to prevent excessive immune activation. This article reviews the origin, phenotype, and immunoregulatory mechanisms of Breg cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!