Human health safety and environmental concerns have resulted in the widespread deregistration of several agronomic important nematicides. New and safer nematicides are urgently needed. However, a high-throughput bioassay for screening potential nematicides has not been established. We developed a two-step high-throughput nematicidal screening method to combine a cell-based MTS colorimetric assay with Caenorhabditis elegans embryo cells for preliminary cytotoxicity screening (step 1) followed by in vitro larval assay for nematicidal activity (step 2). Based on three conventional nematicides' test, high correlations were obtained between cell viability and larval viability and "r" values were 0.78 for Avermectin, 0.95 for Fosthiazate, and 0.65 for Formaldehyde solution. Further assays with 60 fungal secondary metabolites (extracts, fractions and pure compounds) also demonstrated the high correlation between cell viability and larval viability (r=0.60) and between the C. elegans cell viability and the juvenile viability of soybean cyst nematode Heterodera glycines (r=0.48) and pine wood nematode Bursaphelenchus xylophilus (r=0.56). Six metabolites with high cytotoxicity have performed high larval mortality with a LC50 range of 6.8-500μg/ml. These results indicate that the proposed two-step screening assay represents an efficient and labor-saving method for screening natural nematicidal products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2014.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!