AI Article Synopsis

Article Abstract

Background: Excess expression of acetylcholinesterase (AChE) in the cortex and hippocampus causes a decrease in the number of glutamatergic synapses and alters the expression of neurexin and neuroligin, trans-synaptic proteins that control synaptic stability. The molecular sequence and three-dimensional structure of AChE are homologous to the corresponding aspects of the ectodomain of neuroligin. This study investigated whether excess AChE interacts physically with neurexin to destabilize glutamatergic synapses.

Results: The results showed that AChE clusters colocalized with neurexin assemblies in the neurites of hippocampal neurons and that AChE co-immunoprecipitated with neurexin from the lysate of these neurons. Moreover, when expressed in human embryonic kidney 293 cells, N-glycosylated AChE co-immunoprecipitated with non-O-glycosylated neurexin-1β, with N-glycosylation of the AChE being required for this co-precipitation to occur. Increasing extracellular AChE decreased the association of neurexin with neuroligin and inhibited neuroligin-induced synaptogenesis. The number and activity of excitatory synapses in cultured hippocampal neurons were reduced by extracellular catalytically inactive AChE.

Conclusions: Excessive glycosylated AChE could competitively disrupt a subset of the neurexin-neuroligin junctions consequently impairing the integrity of glutamatergic synapses. This might serve a molecular mechanism of excessive AChE induced neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973991PMC
http://dx.doi.org/10.1186/1756-6606-7-15DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
12
ache
10
synaptic stability
8
glutamatergic synapses
8
neurexin neuroligin
8
ache co-immunoprecipitated
8
neurexin
5
interaction acetylcholinesterase
4
acetylcholinesterase neurexin-1β
4
neurexin-1β regulates
4

Similar Publications

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Chronic stress (CS) is a debilitating condition that negatively affects body and brain. In mice, CS effects range from changes in behaviour and brain microstructure down to the level of gene expression. These effects are partly mediated by sex and sex steroid hormones, which in turn are affected by the palmitoyl acyltransferase ZDHHC7.

View Article and Find Full Text PDF

Ketamine administration during adolescence impairs synaptic integration and inhibitory synaptic transmission in the adult dentate gyrus.

Prog Neurobiol

January 2025

Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. Electronic address:

Ketamine administration during adolescence affects cognitive performance; however, its long-term impact on synaptic function and neuronal integration in the hippocampus a brain region critical for cognition remains unclear. Using functional and molecular analyses, we found that chronic ketamine administration during adolescence exerts long-term effects on synaptic integration, expanding the temporal window in an input-specific manner affecting the inner molecular layer but not the medial perforant path inputs in the adult mouse dorsal hippocampal dentate gyrus. Ketamine also alters the excitatory/inhibitory balance by reducing the efficacy of inhibitory inputs likely due to a reduction in parvalbumin-positive interneurons number and function.

View Article and Find Full Text PDF

Huntingtin plays an essential role in the adult hippocampus.

Neurobiol Dis

January 2025

Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:

The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.

View Article and Find Full Text PDF

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!