Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The etiology and pathogenesis of PD are still unknown, however, many evidences suggest a prominent role of oxidative stress, inflammation, apoptosis, mitochondrial dysfunction and proteosomal dysfunction. The peroxisome proliferator-activated receptor (PPAR) ligands, a member of the nuclear receptor family, have anti-inflammatory activity over a variety of rodent's models for acute and chronic inflammation. PPAR-α agonists, a subtype of the PPAR receptors, such as fenofibrate, have been shown a major role in the regulation of inflammatory processes. Animal models of PD have shown that neuroinflammation is one of the most important mechanisms involved in dopaminergic cell death. In addition, anti-inflammatory drugs are able to attenuate toxin-induced parkinsonism. In this study we evaluated the effects of oral administration of fenofibrate 100mg/kg 1h after infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the SNpc. First, we assessed the motor behavior in the open field for 24h, 7, 14 and 21 days after MPTP. Twenty-two days after surgery, the animals were tested for two-way active avoidance and forced swimming for evaluation regarding cognitive and depressive parameters, respectively. Twenty-three days after infusion of the toxin, we quantified DA and turnover and evaluated oxidative stress through the measurement of GSH (glutathione peroxidase), SOD (superoxide dismutase) and LOOH (hydroperoxide lipid). The data show that fenofibrate was able to decrease hypolocomotion caused by MPTP 24h after injury, depressive-like behavior 22 days after the toxin infusion, and also protected against decreased level of DA and excessive production of reactive oxygen species (ROS) 23 days after surgery. Thus, fenofibrate has shown a neuroprotective effect in the MPTP model of Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2014.02.009 | DOI Listing |
ACS Nano
January 2025
Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China.
The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function.
View Article and Find Full Text PDFRSC Med Chem
December 2024
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!