The aim of this project was to investigate the interaction between the calcium-sensing receptor (CaSR) and proton extrusion by the V-ATPase and gastric-like isoform of the H(+)/K(+)-ATPase in the mouse nephron. Biochemical activity of H(+)- ATPases was analysed using a partially purified membrane fraction of mouse cortex and outer medullary region. The V-ATPase activity (sensitive to 10(-7) mol·L(-1) bafilomycin) from the cortical and outer medullary region was significantly stimulated by increasing the [Formula: see text] (outside Ca(2+)), in a dose-dependent pattern. Gastric H(+)/K(+)-ATPase activity (sensitive to 10(-5) mol·L(-1) Schering 28080) was also sensitive to changes in [Formula: see text] levels. A significant increase in V-ATPase activity was also observed when CaSR was stimulated with agonists such as 300 μmol·L(-1) Gd(3+) and 200 μmol·L(-1) neomycin, both in the cortex and outer medulla. The cortical and outer medullary gastric H(+)/K(+)-ATPase activity was also stimulated by Gd(3+) and neomycin. Finally, cortical V-ATPase activity was significantly stimulated by 10(-9) mol·L(-1) angiotensin II, and the stimulation of CaSR in the presence of angiotensin significantly enhanced this effect, suggesting that an interaction in the intracellular signaling pathways is involved. In summary, CaSR stimulation enhances the biochemical activity of V-ATPase and gastric H(+)/K(+)-ATPase in both the cortical and outer medullary region of mouse kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2013-0256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!