Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution gives an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4827655DOI Listing

Publication Analysis

Top Keywords

high energy
8
fibre composite
8
negative ions
8
energy flux
4
flux thermo-mechanical
4
thermo-mechanical test
4
test 1d-carbon-carbon
4
1d-carbon-carbon fibre
4
composite prototypes
4
prototypes spider
4

Similar Publications

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Tetrahedral Lithium Stuffing in Disordered Rocksalt Cathodes for High-Power-Density and Energy-Density Batteries.

J Am Chem Soc

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Li-rich cation-disordered rocksalt (DRX) materials introduce new paradigms in the design of high-capacity Li-ion battery cathode materials. However, DRX materials show strikingly sluggish kinetics due to random Li percolation with poor rate performance. Here, we demonstrate that Li stuffing into the tetrahedral sites of the Mn-based rocksalt skeleton injects a novel tetrahedron-octahedron-tetrahedron diffusion path, which acts as a low-energy-barrier hub to facilitate high-speed Li transport.

View Article and Find Full Text PDF

Promoting SO and OH Generation from Sulfate Solution toward Efficient Electrochemical Oxidation of Organic Contaminants at a B/N-Doped Diamond Flow-Through Electrode.

Environ Sci Technol

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO/OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!