The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4864052 | DOI Listing |
J Community Psychol
January 2025
Center for Health Equity, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Neighborhood factors and the built environment (e.g., sidewalks, bike lanes and public transportation) are important social determinants of mental health.
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.
View Article and Find Full Text PDFNature
January 2025
Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China. Electronic address:
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.
View Article and Find Full Text PDFIntroduction SUI is a common pelvic floor dysfunction in middle-aged and elderly women, which has a serious negative impact on the patient's quality of Life (QoL), pelvic floor muscle training (PFMT) and electrical stimulation (ES), as common non-surgical treatment modalities, have been widely used in the management of SUI. However, there is controversy about the effectiveness of the combined application of these two interventions. For this reason, this study evaluated the efficacy of PFMT combined with ES in the treatment of SUI by Meta-analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!