Central neural mechanisms of interindividual difference in discomfort during sensorimotor incongruence in healthy volunteers: an experimental study.

Rheumatology (Oxford)

Department of Physical Therapy, Konan Woman's University, Hyogo, Multidisciplinary Pain Center, Aichi Medical University, Aichi, Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara and Rehabilitation Center, Tanabe Orthopaedics, Osaka, Japan.

Published: July 2014

Objectives: It has been reported that disturbance in sensory and motor function may induce sensorimotor incongruence and produce pain, discomfort and other sensations in healthy volunteers. One study suggested that sensorimotor incongruent information to healthy subjects results in increased neuronal activity in the posterior parietal cortex (PPC) and dorsolateral prefrontal cortex; however, this study did not take into consideration the discomfort induced by sensorimotor incongruence. The present study attempted to characterize intracortical electrical activities for sensorimotor incongruence in the frequency domain. In our study, electroencephalogram (EEG) cortical sources were compared between sensorimotor congruence and sensorimotor incongruence. In addition, high and no discomfort subgroups were compared during sensorimotor incongruence.

Methods: Eighteen healthy female subjects participated in this study. Subjects were then asked to flex/extend both arms in a congruent/incongruent manner while viewing a whiteboard/mirror. EEG was performed to determine the cortical activation during sensorimotor congruence and incongruence.

Results: Alpha band activity in the right posterior parietal cortex during sensorimotor incongruence was significantly lower than that of sensorimotor congruence. The source activities induced in the anterior cingulate cortex (ACC) beta band activity and the posterior cingulate cortex (PCC) alpha band activity significantly decreased in the high-discomfort vs the no-discomfort subgroup.

Conclusion: The present findings suggest that the ACC and PCC are more activated in the high-discomfort subgroup than in the no-discomfort subgroup during sensorimotor incongruence. This method may evaluate the effectiveness of new medication therapy and/or rehabilitation by assessing the difference in the neuronal activity of chronic patients before and after treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/ket494DOI Listing

Publication Analysis

Top Keywords

sensorimotor incongruence
28
sensorimotor
12
activity posterior
12
sensorimotor congruence
12
band activity
12
healthy volunteers
8
neuronal activity
8
posterior parietal
8
parietal cortex
8
compared sensorimotor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!