KCNE1 (E1) β-subunits assemble with KCNQ1 (Q1) voltage-gated K(+) channel α-subunits to form IKslow (IKs) channels in the heart and ear. The number of E1 subunits in IKs channels has been an issue of ongoing debate. Here, we use single-molecule spectroscopy to demonstrate that surface IKs channels with human subunits contain two E1 and four Q1 subunits. This stoichiometry does not vary. Thus, IKs channels in cells with elevated levels of E1 carry no more than two E1 subunits. Cells with low levels of E1 produce IKs channels with two E1 subunits and Q1 channels with no E1 subunits--channels with one E1 do not appear to form or are restricted from surface expression. The plethora of models of cardiac function, transgenic animals, and drug screens based on variable E1 stoichiometry do not reflect physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986162PMC
http://dx.doi.org/10.1073/pnas.1323548111DOI Listing

Publication Analysis

Top Keywords

iks channels
24
channels
7
subunits
6
iks
5
individual iks
4
channels surface
4
surface mammalian
4
mammalian cells
4
cells kcne1
4
kcne1 accessory
4

Similar Publications

Identification of KCNE6, a new member of the KCNE family of potassium channel auxiliary subunits.

Commun Biol

December 2024

Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.

The KCNE family (KCNE1-5) is a group of single transmembrane auxiliary subunits for the voltage-gated K channel KCNQ1. The KCNQ1-KCNE complexes are crucial for numerous physiological processes including ventricular repolarization and K recycling in epithelial cells. We identified a new member of the KCNE family, "KCNE6", from zebrafish.

View Article and Find Full Text PDF

Dual effects of mefenamic acid on the I molecular complex.

Br J Pharmacol

November 2024

Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.

Article Synopsis
  • - Mefenamic acid, a non-steroidal anti-inflammatory drug, can both enhance and inhibit cardiac ion currents formed by KCNQ1 and KCNE1 channels, revealing its dual effect on these channels, especially in patients with long and short QT syndromes.
  • - The study used whole cell patch clamp techniques and molecular dynamics simulations to investigate how mefenamic acid interacts with these channels, particularly noting its inhibition at high concentrations and its potential to preserve some current potentiation effects.
  • - Findings emphasize the importance of specific structural regions in the KCNQ1/KCNE1 channels that influence how drugs like mefenamic acid affect ion current, which has significant implications for developing treatments for certain genetic long QT syndrome mutations.*
View Article and Find Full Text PDF

In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval.

View Article and Find Full Text PDF
Article Synopsis
  • The compound N-arachidonoyl-L-serine (ARA-S) activates the Kv7.1/KCNE1 ion channel, which plays a crucial role in heart function, by shortening action potential duration and QT interval in guinea pig hearts.
  • A study using the two-electrode voltage clamp technique shows that ARA-S affects Kv7.1/KCNE1 channels similarly across guinea pig, rabbit, and human models, indicating broad applicability for research.
  • Findings suggest that both rabbit and guinea pig animal models are appropriate for further investigations of ARA-S's cardiac effects, given their comparable responses to the compound.
View Article and Find Full Text PDF

Nearly 1% of babies are born with congenital heart disease-many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!