Nuclear movement and positioning are indispensable for most cellular functions. In plants, strong light-induced chloroplast movement to the side walls of the cell is essential for minimizing damage from strong visible light. Strong light-induced nuclear movement to the side walls also has been suggested to play an important role in minimizing damage from strong UV light. Although both movements are regulated by the same photoreceptor, phototropin, the precise cytoskeleton-based force generation mechanism for nuclear movement is unknown, in contrast to the short actin-based mechanism of chloroplast movement. Here we show that actin-dependent movement of plastids attached to the nucleus is essential for light-induced nuclear movement in the Arabidopsis leaf epidermal cell. We found that nuclei are always associated with some plastids, and that light-induced nuclear movement is correlated with the dynamics of short actin filaments associated with plastids. Indeed, nuclei without plastid attachments do not exhibit blue light-induced directional movement. Our results demonstrate that nuclei are incapable of autonomously moving in response to light, whereas attached plastids carry nuclei via the short actin filament-based movement. Thus, the close association between nuclei and plastids is essential for their cooperative movements and functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964046 | PMC |
http://dx.doi.org/10.1073/pnas.1317902111 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
Background: Recently, we reported that longer-term mixed nut intake significantly reduced serum total and low-density lipoprotein (LDL)-cholesterol, but these markers may not fully capture lipoprotein-related cardiovascular disease (CVD) risk.
Objectives: This randomized, controlled, single-blinded, crossover trial in older adults with overweight or obesity examined the effects of longer-term mixed nut consumption on lipoprotein particle size, number, and lipid distribution.
Methods: Twenty-eight participants (aged 65 ± 3 years; BMI 27.
Int J Mol Sci
January 2025
College of Physical Education, Shanghai University, Shanghai 200444, China.
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA. Electronic address:
Anaphase is tightly controlled spatiotemporally to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!