Background: Mutations in the β-globin gene (HBB) cause haemoglobinopathies where current treatments have serious limitations. Gene correction by homologous recombination (HR) is an attractive approach to gene therapy for such diseases and is stimulated by gene-specific endonucleases, including zinc finger nucleases (ZFNs). Customised nucleases targeting HBB have previously been shown to promote HR-mediated HBB modification in 0.3–60% of drug-selected cells, although frequencies among unselected cells, more relevant to the goal of correcting HBB in primary stem cells, have not been reported.
Methods: ZFNs targeting HBB were tested for HBB binding (two-hybrid assay) or HBB cleavage followed by inaccurate end joining (surveyor assay)in bacteria or human cancer cell lines, respectively. ZFN-stimulated HR was measured in cell lines by a modified fluorescence-based reporter assay or by targeted insertion of a drug-resistance marker into endogenous HBB confirmed by Southern analyses.
Results: Although the ZFNs that we assembled in-house showed limited potential, a commercially commissioned nuclease (ZFN4) enhanced HR mediated HBB modification in up to 95% of drug-selected cells. Among unselected cells, however, this frequency was less than 0.2%. Furthermore, ZFN4 cleaved HBB at an efficiency of 1–2% (surveyor assay) and enhanced the HR reporter assay 20-fold less efficiently than a control endonuclease.
Conclusions: With ZFN4, we achieved higher efficiencies of HR-mediated HBB modification than previously reported for drug-selected cells. Our measurements of ZFN4-induced HR in unselected cells, however, suggest that improved nucleases must be developed if therapeutic HBB correction is to be achievable in primary stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.2758 | DOI Listing |
Clin Transl Med
February 2025
Synthetic Biology of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), PharmaScienceHub (PSH), Saarbrücken, Germany.
The eXchange Unit between Thiolation domains approach and artificial intelligence (AI)-driven tools like Synthetic Intelligence are transforming nonribosomal peptide synthetase and polyketide synthase engineering, enabling the creation of novel bioactive compounds that address critical challenges like antibiotic resistance and cancer. These innovations expand chemical space and optimize biosynthetic pathways, offering precise and scalable therapeutic solutions. Collaboration across synthetic biology, AI, and clinical research is essential to translating these breakthroughs into next-generation treatments and revolutionizing drug discovery and patient care.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynecologic Disease, Beijing 100730 China. Electronic address:
Thalassemia is an inherited blood disorder and traditionally considered more prevalent in Southern China. However, with increased migration and intermarriage, more and more thalassemia carriers had been reported in Northern China. The lack of screening for thalassemia carriers may also result in missed diagnosis in Northern China.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Zoology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.
Methods And Results: We devised a targeted NGS panel spanning an 80.
Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.
Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.
Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.
Background: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!