A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance. | LitMetric

Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance.

Chemistry

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P.R. China), Fax: (+86) 431-85262410; Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P.R. China); University of the Chinese Academy of Sciences, Beijing 100049 (P.R. China).

Published: April 2014

A composite of highly dispersed Fe3 O4 nanoparticles (NPs) anchored in three-dimensional hierarchical porous carbon networks (Fe3 O4 /3DHPC) as an anode material for lithium-ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2 )-expanded ethanol solution. The as-synthesized Fe3 O4 /3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3 O4 NPs was closely coated. As an anode material for LIBs, the Fe3 O4 /3DHPC composite with 79 wt % Fe3 O4 (Fe3 O4 /3DHPC-79) delivered a high reversible capacity of 1462 mA h g(-1) after 100 cycles at a current density of 100 mA g(-1) , and maintained good high-rate performance (728, 507, and 239 mA h g(-1) at 1, 2, and 5 C, respectively). Moreover, it showed excellent long-term cycling performance at high current densities, 1 and 2 A g(-1) . The enhanced lithium-storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3 O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon-based transition-metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201304700DOI Listing

Publication Analysis

Top Keywords

fe3 /3dhpc
12
supercritical carbon
8
carbon dioxide
8
hierarchical porous
8
porous carbon
8
fe3
8
anode material
8
/3dhpc composite
8
fe3 nps
8
dioxide assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!