2-mercaptopropionylglycin (2-MPG), a cell membrane penetrating thiol, was evaluated for its antithrombotic potential using in vitro and in vivo tests. 2-MPG was found to inhibit agonist-induced platelet aggregation and serotonin release as well as prostaglandin/thromboxane synthesis in platelet-rich plasma. Administration of 2-MPG to rats resulted in an inhibition of laser-induced thrombus formation in mesenteric vessels. When plasma was incubated with 2-MPG and then used for determination of various standard coagulation parameters, significant prolongation of the clotting times were observed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vitro vivo
8
inhibition platelet
4
platelet activation
4
activation 2-mercaptopropionylglycin
4
2-mercaptopropionylglycin vitro
4
vivo 2-mercaptopropionylglycin
4
2-mpg
4
2-mercaptopropionylglycin 2-mpg
4
2-mpg cell
4
cell membrane
4

Similar Publications

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

The emergence of multidrug resistanceagainst several antifungal drugs and the absence of alternate therapy limits the treatment choices leading to the spread of Candida auris infections, especially inimmunocompromised patients. This work aims to construct the multi-epitope vaccine using an immuno-informatics approachdue to the lack of efficient treatments for C. auris.

View Article and Find Full Text PDF

Fc-mediated immune stimulating, pro-inflammatory and antitumor effects of anti-HER2 IgE against HER2-expressing and trastuzumab-resistant tumors.

J Immunother Cancer

March 2025

St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK

Background: Anti-human epidermal growth factor receptor 2 (HER2) IgG1-based antibody therapies significantly improve cancer prognosis, yet intrinsic or acquired resistance to fragment antigen-binding (Fab)-mediated direct effects commonly occurs. Most resistant tumors retain antigen expression and therefore remain potentially targetable with anti-HER2 therapies that promote immune-mediated responses. Tumor-antigen-specific IgE class antibodies can mediate powerful immune cell-mediated effects against different cancers and have been shown to activate IgE Fc receptor-expressing monocytes.

View Article and Find Full Text PDF

Inhibition of N6-methyladenosine methylation of ASC by berberine ameliorates pyroptosis of renal tubular epithelial cells in acute kidney injury.

Cell Signal

March 2025

Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China. Electronic address:

Acute kidney injury (AKI) lacks a definitive therapeutic approach beyond supportive care. One significant pathological mechanism involves the regulated death of tubular epithelial cells; however, the regulatory mechanisms underlying this cell death pathway require further investigation. The N6-methyladenosine (m6A) modification, recognized as the most prevalent modification in eukaryotes, plays a critical role in the regulatory processes associated with AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!