Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation.

Nature

1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA.

Published: April 2014

AI Article Synopsis

  • Epithelial folding, important for developing complex tissues, is driven by apical constriction, but the internal mechanisms of force transmission within cells are not well understood.
  • By studying Drosophila embryos during ventral furrow formation, researchers found that cytoplasmic movement can be accurately described by hydrodynamic principles, with cell membranes flowing along with the cytoplasm.
  • Interestingly, even in mutant embryos lacking distinct cell formation, similar cytoplasmic flow patterns were observed, suggesting that the hydrodynamic behavior of the cytoplasm plays a key role in transmitting forces throughout the tissue, independent of individual cell organization.

Article Abstract

Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is used throughout development in most animals. Little is known, however, about how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow formation. We find that cytoplasmic redistribution during the lengthening phase of ventral furrow formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to, or driving force on, the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells before gastrulation ('acellular' embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild-type embryos. Our results indicate that during the lengthening phase of ventral furrow formation, hydrodynamic behaviour of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111109PMC
http://dx.doi.org/10.1038/nature13070DOI Listing

Publication Analysis

Top Keywords

apical constriction
12
ventral furrow
12
furrow formation
12
individual cells
8
lengthening phase
8
phase ventral
8
apical
4
constriction drives
4
drives tissue-scale
4
tissue-scale hydrodynamic
4

Similar Publications

During the study of algal diversity in pyroclastic deposits of the Kamchatka Peninsula, Chlorella-like green algae strains VCA-72 and VCA-93 were isolated from samples collected from along the Baydarnaya river bed on the Shiveluch volcano in 2018 and at the outlet of thermal vapors along the edge of the caldera on the southern slope of the Gorely volcano in 2020. Identification of the strains was carried out within the framework of an integrative approach using microscopic and molecular genetic methods, including preliminary taxon identification, obtaining nucleotide sequences of the small subunit and the internal transcribed spacer rRNA, reconstruction of phylogenetic trees and secondary structures of the ITS1 and ITS2 rRNA regions. On the phylogenetic tree, strain VCA-93 was clustered in the Micractinium thermotolerans species clade.

View Article and Find Full Text PDF

Background And Aims: Recent studies have documented numerous morphoanatomical variations for the seed coat in Bromeliaceae. However, the structural diversity and character evolution of the embryo within this family remain largely unexplored. Given the embryo's significance in plant diversification, this research aims to investigate the morphology and key anatomical features of Bromeliaceae embryos, providing insights into character evolution, taxonomic applications, and reproductive biology.

View Article and Find Full Text PDF

Objective: To evaluate curve correctability, complications, and rate of growth following treatment.

Background: Distraction-founded techniques such as traditionally growing rods or magnetically controlled growing rods are the almost globally accepted management patterns for early onset scoliosis. However, periodic lengthening operations are still needed.

View Article and Find Full Text PDF

Ventral furrow (VF) formation in Drosophila melanogaster is an important model of epithelial folding. Previous models of VF formation require cell volume conservation to convert apically localized constriction forces into lateral cell elongation and tissue folding. Here, we have investigated embryonic morphogenesis in anillin knockdown (scra RNAi) embryos, where basal cell membranes fail to form and therefore cells can lose cytoplasmic volume through their basal side.

View Article and Find Full Text PDF

Apical constriction is a critical cell shape change that bends tissues. How precisely-localized actomyosin regulators drive apical constriction remains poorly understood. gastrulation provides a valuable model to address this question.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!