Bacterial therapies, designed to manufacture therapeutic proteins directly within tumors, could eliminate cancers that are resistant to other therapies. To be effective, a payload protein must be secreted, diffuse through tissue, and efficiently kill cancer cells. To date, these properties have not been shown for a single protein. The gene for Staphylococcus aureus α-hemolysin (SAH), a pore-forming protein, was cloned into Escherichia coli. These bacteria were injected into tumor-bearing mice and volume was measured over time. The location of SAH relative to necrosis and bacterial colonies was determined by immunohistochemistry. In culture, SAH was released and killed 93% of cancer cells in 24 hours. Injection of SAH-producing bacteria reduced viable tissue to 9% of the original tumor volume. By inducing cell death, SAH moved the boundary of necrosis toward the tumor edge. SAH diffused 6.8 ± 0.3 µm into tissue, which increased the volume of affected tissue from 48.6 to 3,120 µm(3). A mathematical model of molecular transport predicted that SAH efficacy is primarily dependent on colony size and the rate of protein production. As a payload protein, SAH will enable effective bacterial therapy because of its ability to diffuse in tissue, kill cells, and expand tumor necrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089002 | PMC |
http://dx.doi.org/10.1038/mt.2014.36 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Microbiology, University of Central Punjab, Lahore, Pakistan.
Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated electrospinning.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Plant Improvement and Valorization of Agro-resources, National School of Engineers of Sfax, University of Sfax, Sfax LR.16ES20, Tunisia.
Urinary tract infections (UTIs) are recognized as the second most common medical condition, following respiratory infections. Despite the availability of numerous efficacious antibiotics for the management of UTIs, the rising incidence of bacterial resistance presents significant challenges in the treatment of these infections. Bacteria are endowed with the ability to reproduce and develop resistance mechanisms against antibiotics.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
Antibiotics play a fundamental role in protecting millions of lives from infectious diseases. However, an important drawback of antibiotic treatment is that each advancement was followed by the development of resistance. This is due to the fact that the majority of pathogenic bacteria are capable of becoming resistant to a number of antimicrobial agents.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department Medical Laboratory Technology, College of Medical Technology, University of Al-Farahidi, Baghdad, Iraq.
Cell Mol Biol (Noisy-le-grand)
January 2025
Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.
Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!