Rigidity and resistance of larval- and adult schistosomes-medium interface.

Biochem Biophys Res Commun

Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.

Published: March 2014

Schistosomiasis is second only to malaria in prevalence and severity, and is still a major health problem in many tropical countries worldwide with about 200-300 million cases and with more than 800 million people at risk of infection. Based on these data, the World Health Organization recommends fostering research efforts for understanding at any level the mechanisms of the infection and then decreasing the social and economical impact of schistosomiasis. A key role is played by the parasite apical lipid membrane, which is entirely impervious to the surrounding elements of the immune system. We have previously demonstrated that the interaction between schistosomes and surrounding medium is governed by a parasite surface membrane sphingomyelin-based hydrogen barrier. In the present article, the elastic contribution to the total motion as a function of the exchanged wave-vector Q and the mean square displacement values for Schistosoma mansoni larvae and worms and Schistosomahaematobium worms have been evaluated by quasi elastic neutron scattering (QENS). The results point out that S. mansoni larvae show a smaller mean square displacement in comparison to S. mansoni and S. haematobium worms. These values increased by repeating the measurements after one day. These differences, which are analogous to those observed for the diffusion coefficient we previously evaluated, are interpreted in terms of rigidity of the parasite-medium interaction. S. mansoni larvae are the most rigid systems, while S. haematobium worms are the most flexible. In addition, temperature and hypoxia induce a weakening of the schistosome-medium interaction. These evidences are related to the strength of the hydrogen-bonded interaction between parasites and environment that we previously determined. We have shown that S. mansoni worms are characterized by a weakened interaction in respect to the larvae, while the S. haematobium worms more weakly interact with the surrounding medium than S. mansoni. The present QENS analysis allowed us to characterize the rigidity of larval- and adult S. mansoni and S. haematobium-host interface and to relate it to the parasite resistance to the hostile elements of the surrounding medium and to the immune effectors attack.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.02.100DOI Listing

Publication Analysis

Top Keywords

surrounding medium
12
mansoni larvae
12
haematobium worms
12
larval- adult
8
square displacement
8
mansoni
7
worms
6
interaction
5
rigidity resistance
4
resistance larval-
4

Similar Publications

Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz.

View Article and Find Full Text PDF

On-Chip DNA Assembly via Dielectrophoresis.

Micromachines (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University, Shanghai 200240, China.

On-chip gene synthesis has the potential to improve the synthesis throughput and reduce the cost exponentially. While there exist several microarray-based oligo synthesis technologies, on-chip gene assembly has yet to be demonstrated. This work introduces a novel on-chip DNA assembly method via dielectrophoresis (DEP) that can potentially be integrated with microarray-based oligo synthesis on the same chip.

View Article and Find Full Text PDF

: Granulomatosis with polyangiitis (GPA) represents a rare autoimmune disease with granulomatous inflammation, tissue necrosis, and systemic vasculitis of the small and medium blood vessels. Although the clinical elements vary, aortic involvement is exceptional and it represents a challenge that requires a rapid intervention with the potential of displaying a fulminant evolution. : We report a 64-year-old male with an 18-year history of GPA who presented atypical low back pain.

View Article and Find Full Text PDF

Investigating the interactions between a poloxamer and TEMPO-oxidised cellulose nanocrystals.

Carbohydr Polym

March 2025

Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising, sustainable materials, with applications in sensors, coatings, pharmaceuticals, and composites. Their modification with block copolymers such as PEO-PPO-PEO triblock copolymers of the Pluronic family has been attempted many times in the literature, with claims that such modification would happen by an anchor(PEO)-buoy(PPO)-anchor(PEO) mechanism. However, there is much disagreement in the literature on this.

View Article and Find Full Text PDF

When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!