Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

Biochem Biophys Res Commun

Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Republic of Korea. Electronic address:

Published: March 2014

Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.02.104DOI Listing

Publication Analysis

Top Keywords

aurora kinase
28
kinase mrna
16
microprocessor complex
12
processing primary
8
primary transcripts
8
mitosis cleavage
8
reduced mitosis
8
aurora
7
kinase
7
mrna
5

Similar Publications

Objectives: To investigate the regulatory mechanism of aurora kinase B (AURKB) for promoting malignant phenotype of osteosarcoma cells.

Methods: HA-Vector or HA-AURKB was transfected in 293T cells to identify the molecules interacting with AURKB using immunoprecipitation combined with liquid chromatography-tandem mass spectrometry followed by verification with co-immunoprecipitation and Western blotting. In cultured osteosarcoma cells with lentivirus-mediated RNA interference of AURKB or DHX9 or their overexpression, the changes in cell proliferation, migration, and invasion activities were observed with EDU and Transwell assays.

View Article and Find Full Text PDF

Identification of chemical inhibitors targeting long noncoding RNA through gene signature-based high throughput screening.

Int J Biol Macromol

December 2024

School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China. Electronic address:

Scalable methods for functionally high-throughput screening of RNA-targeting small molecules are currently limited. Here, an RNA knockdown gene signature and high-throughput sequencing-based high-throughput screening (HTS) were integrated to identify RNA-targeting compounds. We first generated a gene signature characterizing the knockdown of the long non-coding RNA LINC00973.

View Article and Find Full Text PDF

Advancing therapeutic frontiers: a pipeline of novel drugs for luminal and perianal Crohn's disease management.

Therap Adv Gastroenterol

December 2024

Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, 2, Padua 35128, Italy.

Crohn's disease (CD) is a chronic, complex inflammatory disorder of the gastrointestinal tract that presents significant therapeutic challenges. Despite the availability of a wide range of treatments, many patients experience primary non-response, secondary loss of response, or adverse events, limiting the overall effectiveness of current therapies. Clinical trials often report response rates below 60%, partly due to stringent inclusion criteria.

View Article and Find Full Text PDF

Aurora kinase B (AURKB) was reported to assist Aurora kinase A (AURKA) to regulate cellular mitosis. AURKA has been found activated in myeloproliferative neoplasms (MPNs) patients with CALR gene mutation, however, it's unclear whether AURKB displays a compensatory function of AURKA in regulation of CALR mutant cell growth and differentiation. Here, we found that AURKB, similar with AURKA, was aberrantly activated in CALR mutant patients, and displayed a more tolerance to the aurora kinase inhibitor.

View Article and Find Full Text PDF

SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!