Histone modification patterns and their combinatorial readout have emerged as a fundamental mechanism for epigenetic regulation. Here we characterized Spindlin1 as a histone effector that senses a cis-tail histone H3 methylation pattern involving trimethyllysine 4 (H3K4me3) and asymmetric dimethylarginine 8 (H3R8me2a) marks. Spindlin1 consists of triple tudor-like Spin/Ssty repeats. Cocrystal structure determination established concurrent recognition of H3K4me3 and H3R8me2a by Spin/Ssty repeats 2 and 1, respectively. Both H3K4me3 and H3R8me2a are recognized using an "insertion cavity" recognition mode, contributing to a methylation state-specific layer of regulation. In vivo functional studies suggest that Spindlin1 activates Wnt/β-catenin signaling downstream from protein arginine methyltransferase 2 (PRMT2) and the MLL complex, which together are capable of generating a specific H3 "K4me3-R8me2a" pattern. Mutagenesis of Spindlin1 reader pockets impairs activation of Wnt target genes. Taken together, our work connects a histone "lysine-arginine" methylation pattern readout by Spindlin1-to-Wnt signaling at the transcriptional level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967050 | PMC |
http://dx.doi.org/10.1101/gad.233239.113 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, IIT Dharwad, Dharwad, Karnataka 580007, India.
The favorable redox properties of ferrocene have led to the extensive development of ferrocene-based systems for several electrochemical applications but have scarcely been explored for electrochromism. Here, we report the synthesis and electrochromic properties of novel π-conjugated ferrocene-dicyanovinylene systems (- and -). Monosubstituted (-) and disubstituted (-) compounds have been developed via Knoevenagel condensation of methyl-dicyanovinyl ferrocenes ( or ) with various aromatic aldehydes.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
Rationale: Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM.
View Article and Find Full Text PDFGenome Med
January 2025
Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium.
Background: A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!